30 A Generalisation of Shiffman's Second Theorem

Shiffman's second theorem says that if a minimal annulus is bounded by circles in parallel planes, then every level set is a circle.

In [25], it is proved that the same conclusion is true if we replace the boundary circles in Theorem 29.2 by parallel straight lines and assume A is properly embedded.

Furthermore, Toubiana [78] has proved that if two non-parallel straight lines lie in distinct parallel planes then they cannot bound any proper minimal annulus in the slab bounded by the planes.

In this section we will give a generalization of the results stated above, with a unified proof.

Theorem 30.1 Suppose $A \subset S(-1,1)$ is a minimal annulus in a slab and $A(1)=$ $A \cap P_{1}, A(-1)=A \cap P_{-1}$ are straight lines or circles.

1. If both $A(1)$ and $A(-1)$ are circles, then $A(t)=A \cap P_{t}$ is a circle for $-1<t<1$. In particular, A is embedded.
2. If at least one of the $A(1)$ and $A(-1)$ is a straight line and A is properly embedded, then $A(t)=A \cap P_{t}$ is a circle for $-1<t<1$.

Remark 30.2 The first part of Theorem 30.1 is exactly Shffiman's second theorem, Theorem 29.2. We will see that the second part of theorem 30.1 implies the results in [25] and [78].

Let $A \subset S(-1,1)$ be a proper minimal annulus such that $A(1)=A \cap P_{1}$ and $A(-1)=A \cap P_{-1}$ are straight lines or circles and $\partial A=A(1) \cup A(-1)$. In the case that there is only one straight line, we will always assume that $A(1)$ is the straight line. Then the interior of A is conformally equivalent to the interior of

$$
A_{R}=\{z \in \mathbf{C}: 1 / R \leq|z| \leq R\},
$$

for some $1<R<\infty$. In fact the interior of A is conformally equivalent to

$$
\{z \in \mathbf{C}: \rho<|z|<P, \quad 0 \leq \rho<P \leq \infty\}
$$

for some ρ and P. Since A has 1 -dimensional boundary ∂A which is separated by the interior of A, it follows $0<\rho$ and $P<\infty$. Hence if $R=\sqrt{P / \rho}>1$ then $\operatorname{Int}(A) \cong \operatorname{Int}\left(A_{R}\right)$.

There is a conformal harmonic immersion

$$
X: A_{R}-C \hookrightarrow S(-1,1)
$$

where C is a subset of ∂A_{R} and $X(\{|z|=R\}-C)=A(1), X(\{|z|=1 / R\}-C)=A(-1)$. If $A(1)$ and $A(-1)$ are both circles, then $C=\emptyset$; if only $A(1)$ is a straight line, then

