29 Shiffman's Theorems

Recall that we defined a CBA as a minimal annulus $A \in S(-1,1)$ such that $A(1)=$ $A \cap P_{1}$ and $A(-1)=A \cap P_{-1}$ are continuous convex Jordan curves. In the article [76] published in 1956, Max Shiffman proved three elegant theorems about a CBA. They are as follows:

Theorem 29.1 If A is a $C B A$, then $A \cap P_{t}$ is a strictly convex Jordan curve for every $-1<t<1$. In particular, $X: A_{R} \hookrightarrow S(-1,1)$ is an embedding.

Theorem 29.2 If A is a $C B A$ and $\Gamma=\partial A$ is a union of circles, then $A \cap P_{t}$ is a circle for every $-1 \leq t \leq 1$.

Theorem 29.3 If A is a $C B A$ and $\Gamma=\partial A$ is symmetric with respect to a plane perpendicular to $x y$-plane, then A is symmetric with respect to the same plane.

We are going to prove the three Shiffman's theorems by means of the EnneperWeierstrass representation. We have already proved a weaker version of Theorem 29.1, namely Theorem 27.2

Let us first prove Theorem 29.1. We follow the proof of Shiffman. We will write the immersion as $X=(x, y, z)$. For any $\zeta=r e^{i \theta} \in A_{R}$, since X is conformal, by (27.124) we have

$$
x_{\theta}^{2}+y_{\theta}^{2}=r^{2}\left(x_{r}^{2}+y_{r}^{2}\right)+\frac{1}{(\log R)^{2}} .
$$

The immersion $X: A_{R} \hookrightarrow S(-1,1)$ satisfies

$$
\begin{equation*}
x_{\theta}^{2}+y_{\theta}^{2} \geq \frac{1}{(\log R)^{2}} . \tag{29.150}
\end{equation*}
$$

Since X is continuous on $A_{R}, A(1)$ and $A(-1)$ are convex and hence rectifiable. Moreover, $x(R, \theta)$ and $y(R, \theta)$ are functions of bounded variation. Thus $x_{\theta}(R, \theta)$ and $y_{\theta}(R, \theta)$ exist almost everywhere. Let I denote the set on which $x_{\theta}(R, \theta)$ and $y_{\theta}(R, \theta)$ both exist. We will first prove that:

Lemma 29.4 For any $\theta \in I$,

$$
\begin{equation*}
\lim _{r \rightarrow R} x_{\theta}(r, \theta)=x_{\theta}(R, \theta), \quad \lim _{r \rightarrow R} y_{\theta}(r, \theta)=y_{\theta}(R, \theta), \tag{29.151}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{\theta}^{2}(R, \theta)+y_{\theta}^{2}(R, \theta) \geq \frac{1}{(\log R)^{2}} . \tag{29.152}
\end{equation*}
$$

