24 Complete Minimal Surfaces of Finite Topology

Based on Corollary 24.5, Hoffman and Meeks made the following conjecture in [31]:
Conjecture 24.1 Let $X: M \hookrightarrow \mathbf{R}^{3}$ be a properly embedded complete minimal surface of finite topology with more than one end. Then X has finite total curvature.

With the help of Theorem 23.1, we can give a clearer picture of properly embedded complete minimal surfaces with more than one end.

Theorem 24.2 Suppose M is a properly embedded minimal surface in \mathbf{R}^{3} that has two annular ends, each having infinite total curvature. Then these two ends have representatives E_{1}, E_{2} satisfying the following:

1. There exist disjoint closed halfspaces $\mathbf{H}_{1}, \mathbf{H}_{2}$ such that $E_{1} \subset \mathbf{H}_{1}$ and $E_{2} \subset \mathbf{H}_{2}$.
2. All other annular ends of M are asymptotic to flat planes parallel to $\partial \mathbf{H}_{1}$.
3. M has only a finite number of normal vectors parallel to the normal vector of $\partial \mathbf{H}_{1}$.

Proof. Given two properly embedded minimal annuli A_{1}, A_{2} each with compact boundary curve, if $A_{1} \cap A_{2}=\emptyset$ then there exists a standard barrier between them. This means that there exists a half-catenoid or a plane C such that outside of a sufficiently large ball B the barrier C is disjoint from $A_{1} \cup A_{2}$ and also $C \cup B$ separates $A_{1}-B$ from $A_{2}-B$. Now consider the two annular ends E_{1} and E_{2} of M with infinite total curvature; Theorem 23.1 implies that C must be a plane. Since C is disjoint from $E_{1} \cup E_{2}$ outside of some ball, $C \cap\left(E_{1} \cup E_{2}\right)$ is compact. Hence, after removing compact subannuli of E_{1} and E_{2}, we may choose E_{1} and E_{2} to lie in the disjoint halfspaces determined by C. The weak maximum principle at infinity (Remark 15.3) implies that E_{i} and C stay a bounded distance apart for $i=1,2$. Therefore, the distance from C to $E_{1} \cup E_{2}$ is greater than some $\epsilon>0$. It follows that we can choose closed disjoint halfspaces \mathbf{H}_{1}, H_{2} with $E_{1} \subset \mathbf{H}_{1}$ and $E_{2} \subset \mathbf{H}_{2}$. This proves the first statement of the theorem.

Suppose now that E_{3} is another annular end of M that is disjoint from E_{1} and E_{2}. Corollary 22.6 says that at least one of E_{1}, E_{2} and E_{3} lying between two standard barriers. By Proposition 22.3, an end lies between two standard barriers must have finite total curvature. Hence it is evident that E_{3} has finite total curvature and lies between two standard barriers, and hence between E_{1} and E_{2}. If E_{3} is a catenoid end, then either E_{1} or E_{2} lies above a catenoid. By Theorem 23.1, E_{1} or E_{2} has finite total curvature, contradicting our hypotheses. Hence E_{3} is asymptotic to a flat plane P. By the weak maximum principle at infinity the end of this plane P stays a positive distance from both E_{1} and E_{2}. This implies that P intersects both E_{1} and E_{2} in a compact set and hence E_{1} and E_{2} have proper subends that are a positive distance from P. Hence we may assume that $E_{i} \cap P=\emptyset$ for $i=1,2$. By Theorem 16.1, the convex hulls of

