21 The Cone Lemma

Let X_{c} be the cone in \mathbf{R}^{3} defined by the equation

$$
x_{1}^{2}+x_{2}^{2}=\left(x_{3} / c\right)^{2}, \quad c \neq 0 .
$$

The complement of X_{c} consists of three components, two of which are convex. We label the third region W_{c} and note that W_{c} contains $P^{0}-\{0\}$, where $P^{t}=\left\{x_{3}=t\right\}$ for $t \in \mathbf{R}$. Suppose $M \subset W_{c}$ is a noncompact, properly immersed minimal annulus with compact boundary.

Note that as $c \rightarrow 0, X_{c}-\{0\}$ collapses to a double covering of $P^{0}-\{0\}$. Note also that any horizontal plane or vertical catenoid is eventually disjoint from any X_{c}, hence eventually contained in W_{c}, no matter how small c is (by "eventually" we mean "outside of a compact set"). Since any embedded complete minimal annular end of finite total curvature is asymptotic to a plane or a catenoid (a graph with logarithmic growth), it follows that, after suitable rotation, such an end is eventually contained in any W_{c}. By Jorge and Meeks' theorem, Theorem 12.1, it is easy to see that a minimally immersed end of finite total curvature with a horizontal limit tangent plane is also eventually contained in every X_{c}. The Cone Lemma [29] shows that this property implies that the annular end must have finite total curvature if it is proper. Hence after a rotation if necessary, a proper minimal annular end has finite total curvature if and only if it is eventually contained in every X_{c}.

Let $A:=\{z \in \mathbf{C}|1 \leq|z|<\infty\}$.
Theorem 21.1 (The Cone Lemma) Let $X: A \hookrightarrow \mathbf{R}^{3}$ be a properly immersed minimal annulus with compact boundary. If $M:=X(A)$ is eventually contained in W_{c} for a sufficiently small c, then X has finite total curvature.

In order to prove the Cone Lemma we need to introduce the concept of foliation.
Definition 21.2 Let M be a C^{∞} manifold of dimension 3. A $C^{k}, 1 \leq k \leq \infty$, foliation of M is a set of leaves $\left\{\mathcal{L}_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ in M that satisfies the following conditions:

1. $\left\{\mathcal{L}_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is a collection of disjoint 2-submanifolds.
2. $\bigcup_{\alpha \in \mathcal{A}} \mathcal{L}_{\alpha}=M$.
3. For all points $p \in M$ there exists a neighbourhood U of M and class C^{k} coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$ of U such that $\mathcal{L}_{\alpha} \cap U$ is empty or is the solution of $x_{3}=$ constant in U.

Before proving Theorem 21.1, we will state a fact about the catenoid. Let C be the unit circle in P^{0} centred at $(0,0)$. Let C_{h} be the translate of C in the plane P^{h}. There is an $h_{2}>0$ such that for $0<h<h_{2}$ there are two catenoids bounded by C_{-h} and C_{h}; one is stable and the other is unstable. While the $C_{-h_{2}}$ and $C_{h_{2}}$ bound only one

