16 The Convex Hull of a Minimal Surface

Recall that the convex hull $H(E)$ of a set $E \subset \mathbb{R}^{n}$ is defined as

$$
H(E)=\bigcap_{E \subset \mathbf{H}} \mathbf{H}
$$

where \mathbf{H} is a halfspace in \mathbf{R}^{n}. Of course, if E is not contained in any halfspace, then $H(E)=\mathbf{R}^{n}=\bigcap_{\emptyset} \mathbf{H}$.

We want to study the convex hull of a minimal surface.
Let M be conformally a bounded plane domain and $X: M \hookrightarrow \mathbb{R}^{3}$ be a minimal surface such that X is continuous on \bar{M}. If $\partial M \neq \emptyset$, then a simple application of the maximum principle for harmonic functions shows that $X(M) \subset H(X(\partial M))$, where $H(X(\partial M))$ is the convex hull of $X(\partial M)$.
Exercise : Prove this fact.
Now using the the Halfspace Theorem, we can prove more.
Theorem 16.1 ([32]) Suppose that $M \subset \mathbf{R}^{3}$ is a proper, complete, connected minimal surface in \mathbf{R}^{3}, whose boundary ∂M, which may be empty, is a compact set. Then exactly one of the following holds:

1. $H(M)=\mathbb{R}^{3}$;
2. $H(M)$ is a halfspace;
3. $H(M)$ is a closed slab between two parallel planes;
4. $H(M)$ is a plane;
5. $H(M)$ is a compact convex set. This case occurs precisely when M is compact.

Furthermore, ∂M has nonempty intersection with each boundary component of $H(M)$.

Remark 16.2 We note that all of these cases are possible. For 1 and 2; examples are the catenoid and half-catenoid. For 3 we could take any of the examples in theorem 14.8 and consider the portion of these surfaces in the slab $\left|x_{3}\right| \leq 1$. This surface is bounded by two Jordan curves. For 4 we have a plane and 5 is the case for any compact example.

Proof of Theorem 16.1. Suppose now that cases 1,4 and 5 do not occur. To prove that case 2 or case 3 must occur we need show that if H_{1} and H_{2} are distinct smallest halfspaces containing M, then $P_{1}=\partial H_{1}$ and $P_{2}=\partial H_{2}$ are parallel planes. Suppose now that P_{1} and P_{2} are not parallel planes. We shall derive a contradiction.

The interior of M cannot have a point in common with $P_{1} \cup P_{2}$. (If it did then the maximum principle for minimal surface (see Theorem 4.4 and Remark 4.6) implies it

