15 The Halfspace Theorem and The Maximum Principle at Infinity

By Jorge and Meeks' theorem, we know that if we stand at infinity to view a complete minimal surface of finite total curvature, it looks like several planes passing through origin,

We will further discuss the image of such a surface. The basic theorem in this section is the Halfspace Theorem due to Hoffman and Meeks [32], its proof is surprisingly simple.

Theorem 15.1 (Halfspace Theorem) A connected, proper, possibly branched, nonplanar complete minimal surface M in \mathbb{R}^3 is not contained in a halfspace.

Proof. Suppose the theorem is false.

Define $\mathbf{H}_t := \{(x_1, x_2, x_3) \mid x_3 \geq t\}, P_t = \partial \mathbf{H}_t, t \in \mathbf{R}$. By a translation and rotation, we may assume that $M \subset \mathbf{H}_0$. Let $T := \sup\{t \mid M \subset \mathbf{H}_t\}$. If $p \in M \cap P_T$, then P_T is the tangent plane $T_p M$. By Corollary 4.5, M must be on both sides of P_T , contradicting the fact that $M \subset \mathbf{H}_{T-\epsilon}$, any $\epsilon > 0$. Hence $M \cap P_T = \emptyset$. By a translation, we may assume that T = 0.

Let M_{ϵ} be the downward translation of M, then $M_{\epsilon} \cap P_0 \neq \emptyset$ for any $\epsilon > 0$. Let $C = C_1$ be the half-catenoid $\{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 = \cosh^2(x_3), x_3 < 0\}$. By choosing $\epsilon > 0$ small enough, we may insure that $M_{\epsilon} \cap C_1 = \emptyset$ and $M_{\epsilon} \cap D_1 = \emptyset$, where D_1 is the unit-disk in P_0 . Specifically, let d > 0 be the distance from M to the disk of radius $R = \cosh(1) > 1$. Outside the cylinder over D_R , C_1 lies below the plane P_{-1} . We will choose $\epsilon < \frac{1}{2}\min\{1, d\}$ small enough so that $M_{\epsilon} \cap C_1 = \emptyset$ and $M_{\epsilon} \cap P_0 \neq \emptyset$.

Denote by C_t the homothetic shrinking of C_1 by $t, 0 < t \leq 1$. Observing that C_t converges smoothly, away from 0, to $P_0 - \{0\}$ we may conclude from the previous paragraph that $C_t \cap M_{\epsilon} \neq \emptyset$ for t sufficiently small, that $C_t \cap M_{\epsilon}$ lies outside the cylinder over D_1 for all t, and that $C_t \cap M_{\epsilon} = \emptyset$ for t close to 1.

Let $S = \{t \mid C_t \cap M_{\epsilon} \neq \emptyset\}$ and T =lubS. We claim that $T \in S$, i.e., $C_T \cap M_{\epsilon} \neq \emptyset$, thus T < 1.

If T is an isolated point of S, we are done. If not, we can find an increasing sequence $t_n \to T$, with $t_0 > T/2$, such that there exist points $p_n \in C_1$ with $t_n p_n \in C_{t_n} \cap M_{\epsilon}$. If $p_n = (x_n, y_n, z_n)$, we must have $t_n z_n \ge -\epsilon$ which implies $z_n \ge -\epsilon/t_n \ge -2\epsilon/T$. This means that p_n lies on the bounded closed subset $X_T := \{(x_1, x_2, x_3) \in C_1 \mid x_3 \ge -2\epsilon/T\}$ and must therefore possess a convergent subsequence. If $\{p_j\}$ is that subsequence and $p_j \to p_0 \in C_1$, then $t_j p_j \in C_{t_j} \cap M_{\epsilon}$. Since X_T is compact and M is proper, $\{t_j p_j\}$ must have a convergent subsequence in M_{ϵ} , still denoted by $\{t_j p_j\}$, and by continuity, $Tp_0 \in C_T \cap M_{\epsilon}$. This proves that $C_T \cap M_{\epsilon} \neq \emptyset$.

Since the boundary of C_T lies inside $D_1 \subset P_0$, and that disk is disjoint from M_{ϵ} , Tp_0 must be an interior point of C_T . Moreover, the fact that T < 1 and $C_t \cap M_{\epsilon} = \emptyset$ for t > T means that C_T meets M_{ϵ} at Tp_0 , but lies locally on one side of M_{ϵ} near