15 The Halfspace Theorem and The Maximum Prin-
ciple at Infinity

By Jorge and Meeks’ theorem, we know that if we stand at infinity to view a complete
minimal surface of finite total curvature, it looks like several planes passing through
origin,

We will further discuss the image of such a surface. The basic theorem in this section
is the Halfspace Theorem due to Hoffman and Meeks [32], its proof is surprisingly simple.

Theorem 15.1 (Halfspace Theorem) A connected, proper, possibly branched, non-
planar complete minimal surface M in R? is not contained in a halfspace.

Proof. Suppose the theorem is false.
Define H; := {(z1, 22, z3) ’xg, > t}, P, = 0H,, t € R. By a translation and rotation,

we may assume that M C Hy. Let T := sup{t¢ ] M c H;}. If pe MNPy, then Pris the
tangent plane T,M. By Corollary 4.5, M must be on both sides of Pr, contradicting
the fact that M C Hr_, any € > 0. Hence M N Pr = . By a translation, we may
assume that 7' = 0.

Let M. be the downward translation of M, then M, N Py # 0 for any € > 0. Let
C = C be the half-catenoid {(x1,zs, z3) ,a:f + 22 = cosh®(z3), z3 < 0}. By choosing
€ > 0 small enough, we may insure that M, N C; = § and M. N Dy = (), where D, is
the unit-disk in FPy. Specifically, let d > 0 be the distance from M to the disk of radius
R = cosh(1) > 1. Outside the cylinder over Dg, C; lies below the plane P_;. We will
choose € < 3 min{1, d} small enough so that M, N C; =0 and M. N Py # 0.

Denote by C; the homothetic shrinking of C; by ¢, 0 < ¢ < 1. Observing that
C, converges smoothly, away from 0, to Py — {0} we may conclude from the previous
paragraph that C;N M, # 0 for ¢ sufficiently small, that C;N M, lies outside the cylinder
over Dy for all ¢, and that C, N M, = ) for ¢ close to 1.

Let S = {t|C:N M, # 0} and T = lubS. We claim that T € S, i.e., Cr N M, # 0,
thus T' < 1.

If T is an isolated point of S, we are done. If not, we can find an increasing sequence
tn, — T, with ty > T'/2, such that there exist points p, € C; with t,p, € Cy, N M. If
Pn = (ZTn, Yn, 2n), we must have ¢,2, > —e which implies z, > —¢/t, > —2¢/T. This
means that p,, lies on the bounded closed subset Xt := {(z1, 2s,23) € C; ’1’3 > —2¢/T}
and must therefore possess a convergent subsequence. If {p;} is that subsequence and
p; — po € Cy, then t;p; € Cy, N M,. Since Xy is compact and M is proper, {t;p;}
must have a convergent subsequence in M, still denoted by {¢;p;}, and by continuity,
Tpo € Cr N M,. This proves that Cp N M, # 0.

Since the boundary of Cr lies inside D; C Py, and that disk is disjoint from M.,
T'py must be an interior point of Cy. Moreover, the fact that 7' < 1 and C, N M, = 0
for ¢ > T means that Cp meets M, at Tpy, but lies locally on one side of M, near
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