15 The Halfspace Theorem and The Maximum Principle at Infinity

By Jorge and Meeks' theorem, we know that if we stand at infinity to view a complete minimal surface of finite total curvature, it looks like several planes passing through origin,

We will further discuss the image of such a surface. The basic theorem in this section is the Halfspace Theorem due to Hoffman and Meeks [32], its proof is surprisingly simple.

Theorem 15.1 (Halfspace Theorem) A connected, proper, possibly branched, nonplanar complete minimal surface M in \mathbb{R}^{3} is not contained in a halfspace.

Proof. Suppose the theorem is false.
Define $\mathbf{H}_{t}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3} \geq t\right\}, P_{t}=\partial \mathbf{H}_{t}, t \in \mathbb{R}$. By a translation and rotation, we may assume that $M \subset \mathbf{H}_{0}$. Let $T:=\sup \left\{t \mid M \subset \mathbb{H}_{t}\right\}$. If $p \in M \cap P_{T}$, then P_{T} is the tangent plane $T_{p} M$. By Corollary $4.5, M$ must be on both sides of P_{T}, contradicting the fact that $M \subset \mathbf{H}_{T-\epsilon}$, any $\epsilon>0$. Hence $M \cap P_{T}=\emptyset$. By a translation, we may assume that $T=0$.

Let M_{ϵ} be the downward translation of M, then $M_{\epsilon} \cap P_{0} \neq \emptyset$ for any $\epsilon>0$. Let $C=C_{1}$ be the half-catenoid $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}=\cosh ^{2}\left(x_{3}\right), x_{3}<0\right\}$. By choosing $\epsilon>0$ small enough, we may insure that $M_{\epsilon} \cap C_{1}=\emptyset$ and $M_{\epsilon} \cap D_{1}=\emptyset$, where D_{1} is the unit-disk in P_{0}. Specifically, let $d>0$ be the distance from M to the disk of radius $R=\cosh (1)>1$. Outside the cylinder over D_{R}, C_{1} lies below the plane P_{-1}. We will choose $\epsilon<\frac{1}{2} \min \{1, d\}$ small enough so that $M_{\epsilon} \cap C_{1}=\emptyset$ and $M_{\epsilon} \cap P_{0} \neq \emptyset$.

Denote by C_{t} the homothetic shrinking of C_{1} by $t, 0<t \leq 1$. Observing that C_{t} converges smoothly, away from 0 , to $P_{0}-\{0\}$ we may conclude from the previous paragraph that $C_{t} \cap M_{\epsilon} \neq \emptyset$ for t sufficiently small, that $C_{t} \cap M_{\epsilon}$ lies outside the cylinder over D_{1} for all t, and that $C_{t} \cap M_{\epsilon}=\emptyset$ for t close to 1 .

Let $S=\left\{t \mid C_{t} \cap M_{\epsilon} \neq \emptyset\right\}$ and $T=$ lubS. We claim that $T \in S$, i.e., $C_{T} \cap M_{\epsilon} \neq \emptyset$, thus $T<1$.

If T is an isolated point of S, we are done. If not, we can find an increasing sequence $t_{n} \rightarrow T$, with $t_{0}>T / 2$, such that there exist points $p_{n} \in C_{1}$ with $t_{n} p_{n} \in C_{t_{n}} \cap M_{\epsilon}$. If $p_{n}=\left(x_{n}, y_{n}, z_{n}\right)$, we must have $t_{n} z_{n} \geq-\epsilon$ which implies $z_{n} \geq-\epsilon / t_{n} \geq-2 \epsilon / T$. This means that p_{n} lies on the bounded closed subset $X_{T}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in C_{1} \mid x_{3} \geq-2 \epsilon / T\right\}$ and must therefore possess a convergent subsequence. If $\left\{p_{j}\right\}$ is that subsequence and $p_{j} \rightarrow p_{0} \in C_{1}$, then $t_{j} p_{j} \in C_{t_{j}} \cap M_{\epsilon}$. Since X_{T} is compact and M is proper, $\left\{t_{j} p_{j}\right\}$ must have a convergent subsequence in M_{ϵ}, still denoted by $\left\{t_{j} p_{j}\right\}$, and by continuity, $T p_{0} \in C_{T} \cap M_{\epsilon}$. This proves that $C_{T} \cap M_{\epsilon} \neq \emptyset$.

Since the boundary of C_{T} lies inside $D_{1} \subset P_{0}$, and that disk is disjoint from M_{ϵ}, $T p_{0}$ must be an interior point of C_{T}. Moreover, the fact that $T<1$ and $C_{t} \cap M_{\epsilon}=\emptyset$ for $t>T$ means that C_{T} meets M_{ϵ} at $T p_{0}$, but lies locally on one side of M_{ϵ} near

