12 Complete Minimal Surfaces of Finite Total Curvature

To have a better understanding of a complete immersed minimal surface of finite total curvature, we will prove a theorem due to Jorge and Meeks which says that if one looks at the surface from infinity, then the surface looks like a finite number of planes passing through the origin.

Let $X: M \cong S_{k}-\left\{p_{1}, \cdots, p_{n}\right\} \hookrightarrow \mathbf{R}^{3}$ be an immersed complete surface. Let $S^{2}(r)$ be the sphere centred at $(0,0,0)$ with radius r. Let $Y_{r}=X(M) \cap S^{2}(r)$ and

$$
W_{r}=\frac{1}{r} Y_{r} \subset S^{2}
$$

Theorem 12.1 ([38]) Suppose that the Gauss map on M extends continuously to S_{k}. Then

1. $X: M \cong S_{k}-\left\{p_{1}, \cdots, p_{n}\right\} \hookrightarrow \mathbf{R}^{3}$ is proper.
2. For large $r, W_{r}=\left\{\gamma_{1}^{r}, \cdots, \gamma_{n}^{r}\right\}$ consists of n immersed closed curves on S^{2}.
3. γ_{i}^{r} converges in the C^{1} sense to a geodesic of S^{2} with multiplicity $I_{i} \geq 1$ as r goes to infinity.
4. If X is a minimal surface then the convergence in 3 is C^{∞}.
5. X is embedded at an end corresponding to p_{i} if and only if $I_{i}=1$.

Proof. We need only consider a neighbourhood of a puncture p. Let $D^{*}=D-\{p\}$ be a punctured disk and ∂D be compact. Suppose that

$$
N=\lim _{|z| \rightarrow 0} N(z)
$$

and that

$$
\begin{equation*}
N \cdot N(z)=\cos \theta \geq \frac{\sqrt{3}}{2} \text { for } 0 \leq \theta \leq \frac{\pi}{6} \tag{12.52}
\end{equation*}
$$

for all $z \in D^{*}$. Let π be a plane containing the line generated by N and let $\Gamma=X^{-1}(\pi)$. Since $N \odot N(z) \geq \sqrt{3} / 2, X$ is transversal to π. It follows that Γ consists of points in ∂D and connected curves (in fact, the interior of $X^{-1}(\pi)$ is a one-dimensional manifold). Let γ be a connected component of Γ that is a curve.

We will consider coordinates (t, y) in π such that the y-axis is the line generated by N. It follows from (12.52) that the tangent vector of $X(\gamma)$ is never collinear with N. Thus $X(\gamma)$ is the graph of a function $y(t)$. The angle between the normal vector $\left(-y^{\prime}, 1\right)$ of $X(\gamma)$ and N is less than or equal to θ. Therefore

$$
\frac{1}{\sqrt{1+y^{\prime}(t)^{2}}} \geq \cos \theta
$$

