
10 Complete Minimal Surfaces, Osserman's Theo
rem 

Let X: M '-+ R 3 be a surface, A2 = IX1I 2 = IX2I 2, and 'Y: I~ M be a differentiable 
curve. The arc length of 'Y is r := f1 !(X or)'(t)! dt. A divergent path on M is a piecewise 
differentiable curve 'Y: [0, oo) ~ M such that for every compact set V c M there is a 
T > 0 such that 'Y(t) r¢ V for every t > T. If 'Y is piecewise differentiable, we define its 
arc length as 

r :=loco !(X o r)'(t)i dt =loco A('Y(t)) ir'(t)i dt. 

Note that r could be oo. 

Definition 10.1 We say that X is complete if for any divergent curve "(, r = oo. 

Remark 10.2 The use of a divergent curve instead of boundary to describe complete
ness is because that if M = D*, {0} is not a boundary point of M, but is the limit 
point of a divergent curve. 

Note that in case that (M, g) is a non-compact Riemannian manifold and 8M = 0, 
according to the Hopf-Reno theorem, this definition of completeness is equivalent to 
each of the following: 

1. Any geodesic 'Y : I c R '-+ M can be extended to a geodesic 'Y : R '-+ M, 

2. ( M, d) is a complete metric space, where d is the induced distance from the Rie
mannian metric g (roughly speaking, d(p, q) = the arc length of the shortest 
geodesic segment connecting p and q), 

3. in ( M, d), any bounded closed set is compact. 

In general, there are many examples of closed minimal submanifolds M '-+ ( N, g) 
where (N, g) is a Riemannian manifold. For example, S2 c S 3 is minimal. But we have 
seen that there are no closed minimal surfaces in R3 . Hence in some sense a complete 
minimal surface without boundary is the closest analogue to a "closed minimal surface 
in R3". 

Definition 10.3 Let X: M '-+ R 3 be a complete minimal surface. Remember that 
the Gauss curvature K is a non-positive function on M, hence the integral of K has a 
meaning. We define 

K(M) := jMKdA 

to be the total Gauss curvature of M. 

(10.39) 

Let X : M '-+ R3 be a surface and K be the Gauss curvature. Let K- = 
max{-K,O}, K+ = max{K,O}, then K = K+- K-, IKI = K+ + K-. We first 
prove a theorem of A. Huber, the proof shown here belongs to B. White [82]. 
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