10 Complete Minimal Surfaces, Osserman's Theorem

Let $X: M \hookrightarrow \mathbb{R}^{3}$ be a surface, $\Lambda^{2}=\left|X_{1}\right|^{2}=\left|X_{2}\right|^{2}$, and $\gamma: I \rightarrow M$ be a differentiable curve. The arc length of γ is $\Gamma:=\int_{I}\left|(X \circ r)^{\prime}(t)\right| d t$. A divergent path on M is a piecewise differentiable curve $\gamma:[0, \infty) \rightarrow M$ such that for every compact set $V \subset M$ there is a $T>0$ such that $\gamma(t) \notin V$ for every $t>T$. If γ is piecewise differentiable, we define its arc length as

$$
\Gamma:=\int_{0}^{\infty}\left|(X \circ r)^{\prime}(t)\right| d t=\int_{0}^{\infty} \Lambda(\gamma(t))\left|r^{\prime}(t)\right| d t
$$

Note that Γ could be ∞.
Definition 10.1 We say that X is complete if for any divergent curve $\gamma, \Gamma=\infty$.
Remark 10.2 The use of a divergent curve instead of boundary to describe completeness is because that if $M=\mathbb{D}^{*},\{0\}$ is not a boundary point of M, but is the limit point of a divergent curve.

Note that in case that (M, g) is a non-compact Riemannian manifold and $\partial M=\emptyset$, according to the Hopf-Reno theorem, this definition of completeness is equivalent to each of the following:

1. Any geodesic $\gamma: I \subset \mathbb{R} \hookrightarrow M$ can be extended to a geodesic $\gamma: \mathbb{R} \hookrightarrow M$,
2. (M, d) is a complete metric space, where d is the induced distance from the Riemannian metric g (roughly speaking, $d(p, q)=$ the arc length of the shortest geodesic segment connecting p and q),
3. in (M, d), any bounded closed set is compact.

In general, there are many examples of closed minimal submanifolds $M \hookrightarrow(N, g)$ where (N, g) is a Riemannian manifold. For example, $S^{2} \subset S^{3}$ is minimal. But we have seen that there are no closed minimal surfaces in \mathbb{R}^{3}. Hence in some sense a complete minimal surface without boundary is the closest analogue to a "closed minimal surface in $\mathbf{R}^{3 \prime \prime}$.

Definition 10.3 Let $X: M \hookrightarrow \mathbb{R}^{3}$ be a complete minimal surface. Remember that the Gauss curvature K is a non-positive function on M, hence the integral of K has a meaning. We define

$$
\begin{equation*}
K(M):=\int_{M} K d A \tag{10.39}
\end{equation*}
$$

to be the total Gauss curvature of M.
Let $X: M \hookrightarrow \mathbb{R}^{3}$ be a surface and K be the Gauss curvature. Let $K^{-}=$ $\max \{-K, 0\}, K^{+}=\max \{K, 0\}$, then $K=K^{+}-K^{-},|K|=K^{+}+K^{-}$. We first prove a theorem of A . Huber, the proof shown here belongs to B . White [82].

