7 The Geometry of the Enneper-Weierstrass Rep-
resentation

Let X : M — R? be a minimal surface. We will give the geometric data, such as the
Gauss map, the first and second fundamental forms, the principal and Gauss curvatures,
etc., of a minimal surface via its Enneper-Weierstrass representation.

One important fact is that the meromorphic function ¢ in the Enneper-Weierstrass
representation corresponds to the Gauss map N. For this we first recall that the Gauss
map N:M — ¥ = S? of an immersion X : M — R3 is defined as

N=|X,AX,|THXuAX,): M = 3.
Let 7: S2—{N} — C be stereographic projection, where A/ is the north pole. Then
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where R and & arebthe real and imaginary parts. We claim that
g=T17oN: M — C.
In fact,
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By (6.15), (6.18), and (6.26)
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