6 The Enneper-Weierstrass Representation

Suppose that X : M < R? is minimal. Since X is harmonic, on an isothermal neigh-
bourhood (U, (z,v)),
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is holomorphic. In fact,
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Let V be another isothermal neighborhood with coordinate w = u + iv, and let
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Hence ~
pdw = ¢dz, (6.17)
which means that ¢ dz gives a globally defined vector valued holomorphic 1-form. Write
w = (w1, wy, w3) = (¢1, b2, ¢3)dz = ddz. (6.18)

By the definition of ¢, X being conformal is equivalent to
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The condition that X is an immersion is equivalent to
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) |dz|* = 2A%|dz|* > 0. (6.20)

Remark 6.1 When 32, |w;|?> = 0 at some point p € M, we call p a branch point of
the surface X : M — R3?. At such a point, X ceases to be an immersion. At times we
want to study minimal surfaces with branch points, called branched minimal surfaces.
For branched minimal surface, since our data ¢ is holomorphic, we see that branch
points are isolated. Thus in any precompact domain there are at most a finite number
of branch points.

Our main interest is in minimal surfaces without branch points. All minimal surfaces
in these notes are branch point free, unless specified otherwise.
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