
5 Isothermal Coordinates for Minimal Surfaces 

There is a direct construction of isothermal coordinates for minimal surfaces. Let X: 
M '---+ R 3 be a minimal surface and p E M. Without of loss generality we can assume 
that X(p) = (0, 0, 0) and N(p) = (0, 0, 1), and there is a simply connected domain 
(0, 0) ED c R 2 such that near (0, 0, 0), X(M) can be written as a graph (x, y, u(x, y)), 
with u : n ---+ R a solution to the minimal surface equation. Writing p = Ux, q = Uy 

and W = (1 + p2 + q2 ) 112 , we see that pdx + qdy is a closed form, i.e., d(pdx + qdy) = 0 
on D. Furthermore, it is also easy to check that the two 1-forms 

are closed. Since D is simply connected, 
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are well defined. Thus 
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Thus the transformation (x, y) ---+ (~, r;) has a local inverse (~, r;) ---+ (x, y) and setting 
x = x(~, r;), y = y(~, r;), z(~, r;) = u(x(~, r;), y(~, r;)), we find 

Calculation shows that 
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Thus ( ~, r;) is an isothermal coordinate. Furthermore, ( ~, r;) has the property that 
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