5 Isothermal Coordinates for Minimal Surfaces

There is a direct construction of isothermal coordinates for minimal surfaces. Let X : $M \hookrightarrow \mathbf{R}^{3}$ be a minimal surface and $p \in M$. Without of loss generality we can assume that $X(p)=(0,0,0)$ and $N(p)=(0,0,1)$, and there is a simply connected domain $(0,0) \in \Omega \subset \mathbf{R}^{2}$ such that near $(0,0,0), X(M)$ can be written as a graph $(x, y, u(x, y))$, with $u: \Omega \rightarrow \mathbf{R}$ a solution to the minimal surface equation. Writing $p=u_{x}, q=u_{y}$ and $W=\left(1+p^{2}+q^{2}\right)^{1 / 2}$, we see that $p d x+q d y$ is a closed form, i.e., $d(p d x+q d y)=0$ on Ω. Furthermore, it is also easy to check that the two 1 -forms

$$
\eta_{1}:=\frac{1}{W}\left(\left(1+p^{2}\right) d x+p q d y\right), \quad \eta_{2}:=\frac{1}{W}\left(p q d x+\left(1+q^{2}\right) d y\right),
$$

are closed. Since Ω is simply connected,

$$
\xi(x, y):=x+\int_{(0,0)}^{(x, y)} \eta_{1}=x+F(x, y), \quad \eta(x, y):=y+\int_{(0,0)}^{(x, y)} \eta_{2}=y+G(x, y),
$$

are well defined. Thus

$$
\begin{aligned}
& \frac{\partial \xi}{\partial x}=1+\frac{1+p^{2}}{W}, \quad \frac{\partial \xi}{\partial y}=\frac{p q}{W}, \\
& \frac{\partial \eta}{\partial x}=\frac{p q}{W}, \quad \frac{\partial \eta}{\partial y}=1+\frac{1+q^{2}}{W},
\end{aligned}
$$

and

$$
J=\frac{\partial(\xi, \eta)}{\partial(x, y)}=2+\frac{2+p^{2}+q^{2}}{W}=\frac{(W+1)^{2}}{W}>0 .
$$

Thus the transformation $(x, y) \rightarrow(\xi, \eta)$ has a local inverse $(\xi, \eta) \rightarrow(x, y)$ and setting $x=x(\xi, \eta), y=y(\xi, \eta), z(\xi, \eta)=u(x(\xi, \eta), y(\xi, \eta))$, we find

$$
\begin{array}{ll}
\frac{\partial x}{\partial \xi}=\frac{W+1+q^{2}}{(W+1)^{2}}, & \frac{\partial x}{\partial \eta}=-\frac{p q}{(W+1)^{2}}, \\
\frac{\partial y}{\partial \xi}=-\frac{p q}{(W+1)^{2}}, & \frac{\partial x}{\partial \eta}=\frac{W+1+p^{2}}{(W+1)^{2}}, \\
\frac{\partial z}{\partial \xi}=p \frac{\partial x}{\partial \xi}+q \frac{\partial y}{\partial \xi}, & \frac{\partial z}{\partial \eta}=p \frac{\partial x}{\partial \eta}+q \frac{\partial y}{\partial \eta}
\end{array}
$$

Calculation shows that

$$
\left|X_{\xi}\right|^{2}=\left|X_{\eta}\right|^{2}=\frac{W}{J}=\frac{W^{2}}{(W+1)^{2}}, \quad X_{\xi} \bullet X_{\eta}=0 .
$$

Thus (ξ, η) is an isothermal coordinate. Furthermore, (ξ, η) has the property that

$$
\begin{equation*}
|(\xi, \eta)|^{2}>|(x, y)|^{2} . \tag{5.13}
\end{equation*}
$$

