DEGREE THEORY

E.N. Dancer

References: N. Lloyd, Degree theory, Cambridge University Press.

- K. Deimling, Nonlinear functional analysis, Springer Verlag.
- L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute lecture notes, New York University.
- R.F. Brown, A topological introduction to nonlinear analysis, Birkhauser.
- K.C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhauser.
- M. Matzeu and A. Vignoli, Topological nonlinear analysis, Birkhauser.

(The first three are general references on degree theory)

LECTURE 1

The idea of degree theory is to give a "count" of the number of solutions of nonlinear equations but to count solutions in a special way so that the count is stable to changes in the equations. To see why the obvious count does not work well consider a family of maps $f_t(x)$ on R defined by $f_t(x) = x^2 - t$. As we vary t, f_t changes smoothly. For t < 0, it is easy to see that $f_t(x) = 0$ has no solution, $f_0(x) = 0$ has zero as its only solution while for t > 0, there are two solutions $\pm \sqrt{t}$. Hence the numbers of solutions changes as we vary t. Hence, to obtain something useful, we need a more careful count. A clue is that $\frac{\partial f_t}{\partial x}$ has different signs at the

Typeset by AMS-TFX