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LECTURE 1 

The idea of degree theory is to give a "count" of the number of solutions of 

nonlinear equations but to count solutions in a special way so that the count is 

stable to changes in the equations. To see why the obvious count does not work 

well consider a family of maps ft( x) on R defined by ft( x) = x2 - t. As we vary 

t,ft changes smoothly. Fort< 0, it is easy to see that ft(x) = 0 has no solution, 

f 0 (x) = 0 has zero as its only solution while fort> 0, there are two solutions ±Vt. 
Hence the numbers of solutions changes as we vary t. Hence, to obtain something 

useful, we need a more careful count. A clue is that 0:: has different signs at the 
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