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This lecture is based on the article of Professor A. G. Vitushkin "Remarkable Facts 
of Complex Analysis" (translated from Russian by P. M. Gauthier), Encyclopaedia of 
Mathematical Sciences, vol. 7 (Several Complex Variables I), Springer-Verlag 1990. 

0. PRELIMINARIES 

Let D be a domain in the complex plane, i.e. an open and connected set in C. A function 
f : D --jo C is said to be holomorphic (or analytic) on D, if it is C-differentiable at any 
point zo E D, i.e. the following limit exists: 

lim f(z)- f(zo). 
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Then-dimensional complex space C" is the product of n copies of the complex plain C. 
It consists of n-tuples of the form z = (z1 , ... , z,.), Zj E C for all j. We denote by liz II the 
length of a vector z: llzll = Jlz1l2 + · · · + jz,.j2 • 

For a domain D lying in C" we say that a function f : D --jo C is holomorphic on D, if 
for every j and fixed z1 , ... , Zj-l, Zj+l, z,. it is holomorphic as a function of Zj (note the 
difference with real differentiability!). 

A mapping (!I, ... , f,.) between two domains inC" is a holomorphic mapping, if each 
its component /j is a holomorphic function. 

Maximum Principle. If a function f is holomorphic on a domain D C C" and 
continuous on D, then 

m~ lf(z)l =max lf(z)j. 
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1. CONTINUATION PHENOMENON 

The most impressive fact from complex analysis is the phenomenon of the continuation 
of functions (Hartogs, 1906; Poincare, 1907). We elucidate its significance by an example. 
If a function f(z1 , .•. , z,.) is defined and holomorphic in a neighbourhood of the boundary 
of a ball in then-dimensional complex space C", n 2::: 2, then it turns out that j(z1, ... , z,.) 
can be continued to a function holomorphic on the whole ball. 
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