Complex Variables: Single v Several

A. V. ISAEV

This lecture is based on the article of Professor A. G. Vitushkin "Remarkable Facts of Complex Analysis" (translated from Russian by P. M. Gauthier), Encyclopaedia of Mathematical Sciences, vol. 7 (Several Complex Variables I), Springer-Verlag 1990.

0. Preliminaries

Let D be a domain in the complex plane, i.e. an open and connected set in C. A function $f: D \to \mathbb{C}$ is said to be *holomorphic* (or *analytic*) on D, if it is C-differentiable at any point $z_0 \in D$, i.e. the following limit exists:

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}.$$

The *n*-dimensional complex space \mathbb{C}^n is the product of *n* copies of the complex plain \mathbb{C} . It consists of *n*-tuples of the form $z = (z_1, \ldots, z_n), z_j \in \mathbb{C}$ for all *j*. We denote by ||z|| the length of a vector z: $||z|| = \sqrt{|z_1|^2 + \cdots + |z_n|^2}$.

For a domain D lying in \mathbb{C}^n we say that a function $f: D \to \mathbb{C}$ is holomorphic on D, if for every j and fixed $z_1, \ldots, z_{j-1}, z_{j+1}, z_n$ it is holomorphic as a function of z_j (note the difference with real differentiability!).

A mapping (f_1, \ldots, f_n) between two domains in \mathbb{C}^n is a holomorphic mapping, if each its component f_j is a holomorphic function.

Maximum Principle. If a function f is holomorphic on a domain $D \subset \mathbb{C}^n$ and continuous on \overline{D} , then

$$\max_{z\in\overline{D}}|f(z)| = \max_{z\in\partial D}|f(z)|.$$

1. CONTINUATION PHENOMENON

The most impressive fact from complex analysis is the phenomenon of the continuation of functions (Hartogs, 1906; Poincaré, 1907). We elucidate its significance by an example. If a function $f(z_1, \ldots, z_n)$ is defined and holomorphic in a neighbourhood of the boundary of a ball in the *n*-dimensional complex space \mathbb{C}^n , $n \geq 2$, then it turns out that $f(z_1, \ldots, z_n)$ can be continued to a function holomorphic on the whole ball.