ELLIPTIC SYSTEMS

JOHN E. HUTCHINSON
Department of Mathematics
School of Mathematical Sciences, A.N.U.

1 Introduction

Elliptic equations model the behaviour of scalar quantities u, such as temperature or gravitational potential, which are in an equilibrium situation subject to certain imposed boundary conditions. In his first four lectures, John Urbas discussed linear ${ }^{1}$ elliptic equations. In his lectures on the minimal surface equation, Graham Williams discussed the minimal surface equation, a quasilinear ${ }^{2}$ elliptic equation in divergence form. Neil Trudinger and Tim Cranny will discuss fully nonlinear ${ }^{3}$ elliptic equations.

Elliptic systems model vector-valued quantities in an equilibrium situation subject to certain imposed boundary conditions. Examples are a vectorfield describing the molecular orientation of a liquid crystal, and the displacement of an elastic body under an external force.

Solutions of elliptic equations are typically as smooth as the data allows (e.g. are C^{∞} if the given data is C^{∞}). Solutions of elliptic systems typically have singularities.

We use as reference [G] the book Multiple Integrals in the Calculus of Variations by M. Giaquinta.

2 A Model, Harmonic Map, Problem

Suppose $\Omega \subset \mathbb{R}^{n}$ is an elastic membrane, "stretched" via the function w over a part of the n-dimensional sphere $S^{n} \subset \mathbb{R}^{n+1}$, where w is specified on the boundary $\partial \Omega$. As a simple approximation to the physical situation, we can regard w as a minimiser of the Dirichlet energy

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega}|D w|^{2},^{4} \tag{1}
\end{equation*}
$$

amongst all maps $w: \Omega \rightarrow \mathbb{R}^{n+1}$ such that

$$
|w|=1,\left.\quad w\right|_{\partial \Omega} \text { specified }
$$

[^0]
[^0]: ${ }^{1}$ The unknown function u and its first and second derivatives occur linearly. The coefficients of u and its derivatives may be nonlinear, but usually smooth, functions of the domain variables x_{1}, \ldots, x_{n}.
 ${ }^{2}$ Linear in the second derivatives of u, but not necessarily linear in u or its first derivatives.
 ${ }^{3}$ Not even linear in the second derivatives of u.
 ${ }^{4}$ Where $|D w|^{2}=\sum_{i, \alpha}\left|D_{i} w^{\alpha}\right|^{2}$. The $\frac{1}{2}$ is merely a convenient normalisation constant.

