FORMATION OF SINGULARITIES IN SOLUTIONS OF THE NONLINEAR SCHRÖDINGER EQUATION WITH CRITICAL POWER NONLINEARITY

Hayato NAWA

1. INTRODUCTION AND RESULTS

In this paper, the author would like to report his results of recent papers [23-28] concerning the nonlinear Schrödinger equation with critical power nonlinearity (NSC). Our main results are Theorem A (" L^{2} concentration" phenomena [23, 24, 26]), Theorem B (Asymptotics of blow-up solutions [27, 28]) and Theorem C (existence of "blow-up" solutions in the energy space $H^{1}\left(\mathbb{R}^{N}\right)$ [27, 28]). Moreover, in Sect. 4, he shall briefly mention the further results.

We start with a review of the Cauchy problem for the nonlinear Schrödinger equation:
$\mathrm{C}(\mathrm{p}) \quad \begin{cases}(\mathrm{NS}) \quad 2 i \frac{\partial u}{\partial t}+\Delta u+|u|^{p-1} u=0, & (t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{N}, \\ (\mathrm{IV}) \quad u(0, x)=u_{0}(x), & x \in \mathbb{R}^{N} .\end{cases}$
Here $i=\sqrt{-1}, u_{0} \in H^{1}\left(\mathbb{R}^{N}\right)$ and Δ is the Laplace operator on \mathbb{R}^{N}. The unique local existence of solutions of $\mathrm{C}(\mathrm{p})$ is well known for $1<p<2^{*}-1\left(2^{*}=\frac{2 N}{N-2}\right.$ if $N \geqq 3,=\infty$ if $\left.N=1,2\right)$: For any $u_{0} \in H^{1}\left(\mathbb{R}^{N}\right)$, there exist a unique solution $u(t, x)$ of $\mathrm{C}(\mathrm{p})$ in $C\left(\left[0, T_{m}\right) ; H^{1}\left(\mathbb{R}^{N}\right)\right)$ for some $T_{m} \in(0, \infty]$ (maximal existence time), and $u(t)$ satisfies the following three conservation laws of L^{2}, the energy and the momentum:

$$
\begin{gather*}
\|u(t)\|=\left\|u_{0}\right\|, \tag{1.1}\\
E_{p+1}(u(t)) \equiv\|\nabla u(t)\|^{2}-\frac{2}{p+1}\|u(t)\|_{p+1}^{p+1}=E_{p+1}\left(u_{0}\right), \tag{1.2}\\
\Im \int_{\mathbb{R}^{N}} \nabla u(t, x) \overline{u(t, x)} d x=\Im \int_{\mathbb{R}^{N}} \nabla u_{0}(x) \overline{u_{0}(x)} d x \tag{1.3}
\end{gather*}
$$

for $t \in\left[0, T_{m}\right)$, where $\|\cdot\|$ and $\|\cdot\|_{p+1}$ denotes the L^{2} norm and L^{p+1} norm respectively. Furthermore $T_{m}=\infty$ or $T_{m}<\infty$ and $\lim _{t \rightarrow T_{m}}\|\nabla u(t)\|=\infty$. For details, see, e.g., [11,12,14].

As for the existence and non-existence of global solutions of $\mathrm{C}(\mathrm{p})$, the following is well known.
(i) If $1<p<1+\frac{4}{N}$, there exists a global solution $u \in C_{b}\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{N}\right)\right.$), for any $u_{0} \in H^{1}\left(\mathbb{R}^{N}\right)$, where $C_{b}\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{N}\right)\right)=C\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{N}\right)\right) \cap L^{\infty}\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{N}\right)\right)$. See $[11,12,14]$.
(ii) If $1+\frac{4}{N} \leqq p<2^{*}-1$, there is a subset $\mathcal{B} \in H^{1}\left(\mathbb{R}^{N}\right)$ such that for any $u_{0} \in \mathcal{B}$ the solution of $\mathrm{C}(\mathrm{p})$ blows up, i.e. the L^{2} norm of its gradient explodes in finite time T_{m}. See $[13,29,30,31,36]$.

