Representations of Derivatives of Functions in Sobolev Spaces in Terms of Finite Differences

Wai-Lok Lo

University of Wollongong

1. Introduction

In numerical analysis, one can approximate f'(x), the derivative of a given function fat x, by a single difference $\frac{f(x)-f(x-h)}{h}$. However, such an approximation is not generally identical to f'(x) if f is not a linear function. On the other hand, if we approximate f'(x) by a sum of the two finite differences $\left[\frac{f(x+h)-f(x)}{2h} + \frac{f(x)-f(x-h)}{2h}\right]$, this approximation is identical to f'(x) for each quadratic function f. This raises the questions: under what conditions can the derivative of a given function be expressed as a sum of finite differences and how many terms in such a sum of finite differences is sufficient?

In [2] p.187, it was shown that if f is a twice continuously differentiable function on R, there are constants a_1 , a_2 and continuous functions f_1 , f_2 such that

$$f'(x) = \sum_{j=1}^{2} [f_j(x) - f_j(x - a_j)], \text{ for all } x \text{ in } \mathbb{R}.$$

In this paper, we apply some results of difference subspaces of $L^{2}(R)$ in [4] to show that for each positive integer *m*, if *f* is a function in the Sobolev space $H^{m+2}(R)$, the subspace of functions in $L^{2}(R)$ whose distributional derivatives up to order *m* are also in $L^{2}(R)$, and if *f'* is the distributional derivative of *f*, then there are constants s_{1} , s_{2} and functions f_{1} , f_{2} in $H^{m}(R)$ such that

$$f' = \sum_{j=1}^{2} [f_j - \delta_{a_j} * f_j] \text{ a.e.}$$
(1)