Appendix A

On the "hyperboloidal initial data", and Penrose conditions.

Let us briefly recall the conformal framework introduced by Penrose [104] to describe the behaviour of physical fields at null infinity. Given a, say vacuum, smooth "physical" space-time $(\tilde{M}, \tilde{\gamma})$ one associates to it a smooth "unphysical space-time" (M, γ) and a smooth function Ω on M, such that \tilde{M} is a subset of M and

$$\Omega|_{\tilde{M}} > 0, \quad \gamma_{\mu\nu}|_{\tilde{M}} = \Omega^2 \tilde{\gamma}_{\mu\nu} , \qquad (A.0.1)$$

$$\Omega|_{\partial \tilde{M}} = 0 , \qquad (A.0.2)$$

$$d\Omega(p) \neq 0 \quad \text{for} \quad p \in \partial \tilde{M} ,$$
 (A.0.3)

where $\partial \tilde{M}$ is the boundary of \tilde{M} in M (it should be stressed that in this section a notation inverse to that used in 1.6 is used: tilded quantities denote the physical ones, while nontilded quantities denote the unphysical (conformally rescaled) ones). It is common usage in general relativity to use the symbol \mathcal{I} for $\partial \tilde{M}$, and we shall sometimes do so. If Σ is a hypersurface in M, by \mathcal{I}^+ we shall denote the connected component of \mathcal{I} which intersects the causal future of Σ . The hypothesis of smoothness of (M, γ, Ω) and the fact that $(\tilde{M}, \tilde{\gamma})$ is vacuum imposes several restrictions on various fields; if one defines (cf. [104])

$$P_{\mu\nu} = \frac{1}{2} \left(R_{\mu\nu} - \frac{1}{6} R \gamma_{\mu\nu} \right), \qquad (A.0.4)$$