STRUCTUAL INEQUALITIES METHOD FOR UNIQUENESS THEOREMS FOR THE MINIMAL SURFACE EQUATION

JENN-FANG HWANG
INSTITUTE OF MATHEMATICS
ACADEMIA SINICA
TAIPEI, TAIWAN 11529
R.O.C.

1. Existence theorems for elliptic equations

Consider the second order elliptic equations in divergence form:

$$Qu = \operatorname{div} A(x, u, Du) + B(x, u, Du) = 0$$

where $Du = \langle D_1 u, ..., D_n u \rangle = \langle \frac{\partial u}{\partial x_1}, ..., \frac{\partial u}{\partial x_n} \rangle$, $A = \langle A_1(x, u, Du), ..., A_n(x, u, Du) \rangle$ and $(A(x, u, Du) - A(x, v, Dv)) \cdot (Du - Dv) > 0$ for every $u, v \in C^1$, $Du \neq Dv$. And consider the Dirichlet problem

(1)
$$\begin{cases} Qu = \operatorname{div} A(x, u, Du) + B(x, u, Du) = 0 & \text{in } \Omega \\ u = \varphi & \text{on } \partial \Omega. \end{cases}$$

It is well-known that the solvability of (1) depends on the structual conditions A, B and the geometric properties of Ω . For example, consider the operator $Qu = \partial_i(a^{ij}u_j) + B$ which is uniformly elliptic. Then the Dirichlet problem (1) is solvable for any bounded smooth domain with continuous boundary value φ .

Now, consider the minimal surface equation $\operatorname{div} Tu=0$ in Ω where Ω is a bounded smooth domain. Then the Dirichlet problem $\operatorname{div} Tu=0$ in $\Omega, u=\varphi$ on $\partial\Omega$ is solvable for Typeset by \mathcal{A}_{MS} -TeX