FRAGMENTABILITY OF ROTUND BANACH SPACES Scott Sciffer

Introduction

A topological space X is said to be fragmented by a metric ρ if for every $\varepsilon>0$ and every subset Y of X there exists a nonempty relatively open subset U of Y such that ρ-diam $(\mathrm{U})<\varepsilon$. The space is said to be fragmentable if there exists such a metric.

The concept of fragmentability was introduced by Jayne and Rogers in 1985 [1]. Further work has been done by Namioka [2], and Ribarska [3, 4]. A major application of fragmentability is in the study of differentiability of convex functions.

A continuous convex function ϕ on an open convex subset A of a Banach space X is said to be Gâteaux differentiable at $\mathrm{x} \in \mathrm{A}$ if

$$
\lim _{\lambda \rightarrow 0} \frac{\phi(x+\lambda y)-\phi(x)}{\lambda}
$$

exists for all $\mathrm{y} \in \mathrm{X}$. The function is said to be Fréchet differentiable at x if the above limit exists and is approached uniformly for all $\mathrm{y} \in \mathrm{X},\|\mathrm{y}\|=1$. A Banach space X is said to be Asplund (weak Asplund) if every continuous convex function on an open convex domain is Fréchet (Gâteaux) differentiable on a dense G_{δ} subset of its domain.

In 1975 Namioka and Phelps, [5, p.739], established that a Banach space is Asplund if and only if the weak * topology on its dual is fragmented by the dual norm, although their result was not couched in these terms. Weak * fragmentability of the dual by some metric is still the most general known condition implying a Banach space is weak Asplund, [3]. Ribarska, [4], has shown that rotund Banach spaces are weakly fragmentable, and that Banach spaces with rotund dual have weak * fragmentable dual, and hence are weak Asplund. Using techniques developed by Preiss, Phelps and Namioka, [6], she has also shown that a Banach space with an equivalent norm Gâteaux differentiable away from 0 has a weak * fragmentable dual, and hence is weak Asplund. Whether or not weak Asplund spaces are characterized by having a weak * fragmentable dual remains an open question.

