INEQUALITIES FOR THE JOINT SPECTRUM OF SIMULTANEOUSLY TRIANGULARIZABLE MATRICES

A.J. Pryde

1. INTRODUCTION

Let $A = (A_1, ..., A_m)$ be an m-tuple of n by n matrices. We say that A is *triangularizable* if there is an invertible matrix Q such that $Q^{-1}A_jQ$ is (upper) triangular for each j = 1, ..., m. In this case, for $1 \le k \le n$, let $\alpha_j^{(k)} = (Q^{-1}A_jQ)_{kk}$ the (k, k) element of $Q^{-1}A_jQ$, and set $\alpha_i^{(k)} = (\alpha_1^{(k)}, ..., \alpha_m^{(k)}) \in \mathbb{C}^m$. The set

(1.1)
$$\sigma(A) = \{\alpha^{(k)} : 1 \le k \le n\}$$

is called the *joint spectrum* of A. For a discussion of this spectrum see Pryde [16].

In particular $\sigma(A)$ has an important subset $\sigma_{pt}(A)$, the joint point spectrum, whose elements $\lambda = (\lambda_1, ..., \lambda_m)$ satisfy $A_j x = \lambda_j x$ for all j and some non-zero $x \in \mathbb{C}^n$. We say that λ is a joint eigenvalue of A with corresponding joint eigenvector x. If the A_j commute then $\sigma(A) = \sigma_{pt}(A)$, though this is not the case in general. However, by a theorem of Lie, if A is triangularizable then $\sigma_{pt}(A)$ is non-empty.

Our aim in this paper is to investigate perturbation inequalities for the joint spectra of triangularizable m-tuples. For this purpose we define the function S(K, L) on compact subsets K and L of c^m by

AMS subject classification (1991): Primary 15A42, 47A55, 47A10; Secondary 15A66, 15A60.