REPRESENTATIONS OF COMPACT GROUPS, CUNTZ-KRIEGER ALGEBRAS, AND GROUPOID C*-ALGEBRAS(*)

M.H. Mann, Iain Raeburn and C.E. Sutherland

Doplicher and Roberts have recently showed how to recover a compact Lie group Gfrom a single faithful representation ρ of G in $SU_n(\mathbb{C})$, via a C^* -algebra \mathcal{O}_{ρ} , constructed from the intertwiners of the tensor powers of ρ , and an endomorphism of \mathcal{O}_{ρ} [3, 4]. The key idea is that the tensor powers ρ^n contain every irreducible representation $\pi \in \hat{G}$, so their intertwiners should contain information about the decompositions of $\pi_1 \otimes \pi_2$ for all $\pi_i \in \hat{G}$, and hence characterise G. We found it intriguing that the theory is based on just one representation ρ , apparently randomly chosen, and attempted to understand how this works. As a first step, we investigated the structure of the algebra \mathcal{O}_{ρ} , and how it depends on ρ .

Our first plan was to identify \mathcal{O}_{ρ} as the C^* -algebra of a locally compact groupoid \mathcal{P} , and exploit the theory of groupoid C^* -algebras [7]. Since \mathcal{O}_{ρ} is constructed from finite-dimensional pieces, and in particular has a large AF core, we looked at the Bratteli diagram of this core. It has a good deal of vertical symmetry — indeed, one can identify the vertices at each level with the set \hat{G} . Thus the path space X of the diagram carries a natural shift, and the groupoid \mathcal{P} is a subset of the groupoid semidirect product $X \times X \times \mathbf{Z}$ with an appropriate topology. Next, we noticed that by enlarging the path space X, we obtained a similar groupoid whose C^* -algebra was the Cuntz-Krieger

(*) This research was supported by the Australian Research Council.

Amer. Math. Soc. 1991 Mathematics Subject Classification: 22D25, 46L80.