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1 Introduction
In [Jon83] Jones initiated the study of modern subfactor theory by de�ning the index of a subfactor. A
stronger combinatorial invariant, called the standard invariant, was later developed and aximoitized by
Ocneanu’s paragroups [Ocn88], Popa’s λ-lattices [Pop95], and Jones’ planar algebras [Jon].

Given λ-lattice, Popa constructed a II1-subfactor whose standard invariant is exactly the given λ-lattice
[Pop95]. Later, in in work with Shlyakhtenko, it was shown that the factors in Popa’s construction can be
made to be isomorphic to the free group factor on in�nitely many generators, L(F∞) [PS03]. Guionnet,
Jones, and Shlyakhtenko gave a diagrammatic (planar algebraic) proof of Popa’s result [GJS10]. In the
�nite depth case, they showed that the factors involved in the construction are interpolated free group
factors [GJS11]. The author later showed that in the in�nite depth case, the factors involved in the
construction are all isomorphic to L(F∞) [Har13].

This article initially appeared as the �nal chapter of the author’s graduate thesis, and is based on a
problem posed by Vaughan Jones. The problem is as follows: Given a subfactor planar algebra, Q, one
can consider the algebras Gr±k (Q) as de�ned in [GJS10], and place the following “toy potential" on Q:

tr(x) =

x

∑
V

where V is a rotationally invariant set of elements in Q. If one is fortunate, tr is positive de�nite on Q
and left multiplication is bounded on L2(Gr(Q)). To this end, it is an interesting problem to study the
von Neumann algebras, N±k (= Gr±k (Q)′′) associated to Q and V .

The case that will be considered here is the case where Q is the standard invariant for a subfactor
N ⊂M that contains an intermediate subfactor, P . As such, it follows that Q contains the Fuss Catalan
planar algebra as a sub planar algebra [BJ97]. Therefore, we can consider the following potential on
Gr+

0 (Q):

tr(x) =

x

∑
FC


