APPENDIX A

A GENERAL REGULARITY THEOREM

We here prove a useful general regularity theorem, which is essentially an abstraction of the "dimension reducing" argument of Federer [FH2]. There are a number of important applications of this general theorem in the text.

Let $P \ge n \ge 2$ and let F be a collection of functions $\phi = (\phi^1, \dots, \phi^Q) : \mathbb{R}^P \to \mathbb{R}^Q (Q=1 \text{ is an important case})$ such that each ϕ^j is locally \mathcal{H}^n -integrable on \mathbb{R}^P . For $\phi \in F, y \in \mathbb{R}^P$ and $\lambda > 0$ we let $\phi_{y,\lambda}$ be defined by

$$\phi_{\mathbf{y},\lambda}(\mathbf{x}) = \phi(\mathbf{y}+\lambda\mathbf{x}), \mathbf{x} \in \mathbb{R}^{P}$$
.

Also, for $\phi \in F$ and a given sequence $\{\phi_k\} \subset F$ we write $\phi_k \rightharpoonup \phi$ if $\int \phi_k f \ d\mathcal{H}^n \rightarrow \int \phi f \ d\mathcal{H}^n$ (in \mathbb{R}^Q) for each given $f \in C^0_c(\mathbb{R}^P)$.

We subsequently make the following 3 special assumptions concerning F: A.1 (Closure under appropriate scaling and translation): If $|y| \leq 1-\lambda$, $0 < \lambda < 1$, and if $\phi \in F$, then $\phi_{\mathbf{v},\lambda} \in F$.

A.2 (Existence of homogeneous degree zero "tangent functions"): If |y| < 1, if $\{\lambda_k\} \neq 0$ and if $\phi \in F$, then there is a subsequence $\{\lambda_k,\}$ and $\psi \in F$ such that $\phi_{y,\lambda_1} \rightarrow \psi$ and $\psi_{0,\lambda} = \psi$ for each $\lambda > 0$.

A.3 ("Singular set" hypotheses): We assume there is a map

sing :
$$F \rightarrow C$$
 (= set of closed subsets of \mathbb{R}^{F})

such that

(1) sing $\phi = \emptyset$ if $\phi \in F$ is a constant multiple of the characteristic function of an n-dimensional subspace of \mathbb{R}^{P} ,