CHAPTER 8

THEORY OF GENERAL VARIFOLDS

Here we describe the theory of general varifolds, essentially following W.K. Allard [AWl].

General varifolds in U (U open in \mathbb{R}^{n+k}) are simply Radon measures on $G_n(U) = \{ (x,s) : x \in U \text{ and } S \text{ is an n-dimensional subspace of } \mathbb{R}^{n+k} \}.$ One basic motivating point for our interest in such objects is described as follows:

Suppose $\{T_i\}$ is a sequence of integer multiplicity currents (see §27) such that the corresponding integer multiplicity varifolds (as in Chapter 4) are stationary in $\|$ (U open in $\|R^{n+k}\rangle$, and suppose $\partial\mathbb{T}_{\,\mathrm{j}}=0$ and there is a mass bound $\sup_{j>i}$ $\lim_{n \to \infty}$ (T_j) $\leq \infty$ $\forall w \in \infty$ By the compactness theorem 27.3 we can assert that $T_{ij} \rightharpoonup T$ for some integer multiplicity T. However it is *not* clear that T is stationary; the chief difficulty is that it is *not* generally true that the corresponding sequence of measures μ_{T} converge to $\mu_{\rm T}$. Indeed if $\mu_{\rm T_{\dot 1}}$ converges to $\mu_{\rm T}$ (as they would by 34.5 in case the T_i are minimizing in U) then it is not hard to prove that T is stationary in U . This leads one to consider measure theoretic convergence rather than weak convergence of the currents. However if we take a limit (in the sense of Radon measures) of some sub-sequence $\{\mu_{\tt T}\}$ of the ${\tt T}$ then we get merely an abstract Radon measure on U , and first variation of this does not make sense.

To resolve these difficulties, we associate with each \int_{j}^{1} a Radon measure V_i on the Grassmaniann $G_n(U)$ ($G_n(U)$ is naturally equipped with a suitable metric - see below); V_j is in fact defined by