CHAPTER 6
CURRENTS

This chapter provides an introduction to the basic theory of currents, with
particular emphasis on integer multiplicity rectifiable n-currents (brieflycalled
integer multiplicity currents), which are essentially just integer n-varifolds
equipped with an orientation.* The concept of such currents was introduced in
the historic paper [FF] of Federer and Fleming; their advantage is that they
are at once able to be represented as "generalized surfaces" (in terms of a
countably n-rectifiable set with an integer multiplicity) and at the same time

have nice compactness properties (see 27.3 below).
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* These are precisely the currents called Llocally rectifiable in the
literature (see [FFl], [FH1]); we have adopted the present terminology
both because it seems more natural and also because it is consistent
with the varifold terminology of Allard (see Chapter 4, Chapter 8).



