CHAPTER 4

THEORY OF RECTIFIABLE n-VARIFOLDS

Let M be a countably n-rectifiable, \mathcal{H}^n -measurable subset of \mathbb{R}^{n+k} , and let θ be a positive locally \mathcal{H}^n -integrable function on M. Corresponding to such a pair (M, θ) we define the rectifiable n-varifold $\underline{v}(M, \theta)$ to be simply the equivalence class of all pairs $(\tilde{M}, \tilde{\theta})$, where \tilde{M} is countably n-rectifiable with $\mathcal{H}^n((M \sim \tilde{M}) \cup (\tilde{M} \sim M)) = 0$ and where $\tilde{\theta} = \theta \mathcal{H}^n$ -a.e. on $M \cap \tilde{M}$.* θ is called the *multiplicity function* of $\underline{v}(M, \theta)$. $\underline{v}(M, \theta)$ is called an integer multiplicity rectifiable n-varifold (more briefly, an *integer* n-*varifold*) if the multiplicity function is integer-valued \mathcal{H}^n -a.e.

In this chapter and in Chapter 5 we develop the theory of general n-rectifiable varifolds, particularly concentrating on *stationary* (see §16) rectifiable n-varifolds, which generalize the notion of classical minimal submanifolds of \mathbb{R}^{n+k} . The key section is §17, in which we obtain the monotonicity formulae; much of the subsequent theory is based on these and closely related formulae.

§15. BASIC DEFINITIONS AND PROPERTIES

Associated to a rectifiable n-varifold $V = \underline{v}(M, \theta)$ (as described above) there is a Radon measure μ_V (called the *weight measure* of V) defined by

15.1
$$\mu_{v} = H^{n} L \theta ,$$

^{*} We shall see later that this is essentially equivalent to Allard's ([AW1]) notion of n-dimensional rectifiable varifold. In case $M \subset U$, U open in \mathbb{R}^{n+k} and θ is locally H^n -integrable in U, we say $V = \underline{v}(M, \theta)$ (as defined above) is a rectifiable n-varifold in U.