NOTATION

The following notation is frequently used without explanation in the text.

$$\begin{split} \bar{A} &= \text{ closure of a subset A (usually in a Euclidean space)} \\ B &\sim A &= \{x \in B : x \notin A\} \\ \chi_A &= \text{ characteristic function of A} \\ \frac{1}{B_A} &= \text{ identity map } A \neq A \\ L^n &= \text{ Lebesgue measure in } \mathbb{R}^n \\ B_\rho(x) &= \text{ open}^{(*)} \text{ ball with centre } x \text{ radius } \rho \\ \bar{B}_\rho(x) &= \text{ closed ball }; \end{split}$$

(If we wish to emphasize that these balls are in the balls in \mathbb{R}^{P} , we write $B_{\rho}^{P}(x)$, $\overline{B}_{\rho}^{P}(x)$.) $\omega_{n} = L^{n}(B_{1}(0))$ $\eta_{x,\lambda} : \mathbb{R}^{P} \neq \mathbb{R}^{P}$

(for $\lambda > 0$, $x \in \mathbb{R}^{P}$) is defined by $\eta_{x,\lambda}(y) = \lambda^{-1}(y-x)$; thus $\eta_{x,1}$ is translation $y \mapsto y-x$, and $\eta_{0,\lambda}$ is homothety $y \mapsto \lambda^{-1}y$)

 $W \subset U$ (U an open subset of \mathbb{R}^P)

shall always mean that W is open and \bar{W} is a compact subset of U .

 $C^k\left(U,V\right)$ (U,V open subsets of finite dimensional vector spaces) denotes the space of C^k maps from U into V .

$$C_{c}^{k}(U,V) = \{\phi \in C^{k}(U,V) : \phi \text{ has compact support}\}$$

(*) In Chapter 1 $B_{0}(x)$ denotes the *closed* ball.