THE HILBERT TRANSFORM ON LIPSCHITZ CURVEST

Ronald Coifman, Alan McIntosh and Yves Meyer

Our aim is to prove the following theorems.

<u>THEOREM A</u>. Let γ be a curve in the complex plane parametrized by x + ih(x), $x \in \mathbb{R}$, where h is a real-valued absolutely continuous function with derivative h' $\in L_{\infty}(\mathbb{R})$. Let H_{γ} denote the Hilbert transform on γ , defined, for $u \in L_{2}(\gamma)$, by

$$(H_{\gamma}u) (x) = \frac{i}{\pi} p.v. \int_{-\infty}^{\infty} \frac{\sqrt{1+ih'(x)}\sqrt{1+ih'(y)}}{(x+ih(x)) - (y+ih(y))} u(y) dy .$$

Then $(H_{\gamma} u)(x)$ is defined for almost all $x \in \mathbb{R}$, and $H_{\gamma} u \in L_2(\mathbb{R})$. Indeed, there exists a constant c, depending only on $\|h'\|_{\infty}$, such that

$$\|H_{\gamma}u\|_{2} \leq c\|u\|_{2}$$
 for all $u \in L_{2}(\mathbb{R})$

<u>THEOREM B</u>. Let $f \in L_{\infty}(\mathbb{R})$, with Re $f \ge 1$, and let M denote the maximal accretive operator in $L_2(\mathbb{R})$ defined by $Mu = -\frac{d}{dx} (f \frac{du}{dx})$, with domain $\mathcal{D}(M) = \{u \in H^1(\mathbb{R}) \mid f \frac{du}{dx} \in H^1(\mathbb{R})\}$ (where $H^1(\mathbb{R}) = \{u \in L_2(\mathbb{R}) \mid \frac{du}{dx} \in L_2(\mathbb{R})\}$). Then the domain of the square root, $M^{\frac{1}{2}}$, is $H^1(\mathbb{R})$, and, if $u \in H^1(\mathbb{R})$,

 $\frac{1}{6}\rho \left\| \mathtt{f} \right\|_{\infty}^{-6} \left\| \frac{\mathrm{d} u}{\mathrm{d} x} \right\|_{2} \ \leq \ \left\| \mathtt{M}^{\frac{1}{2}} u \right\|_{2} \ \leq \ 6\rho \| \mathtt{f} \|_{\infty}^{6} \left\| \frac{\mathrm{d} u}{\mathrm{d} x} \right\|_{2} \ .$

[†] This is an alternative treatment of results to be published in the Annals of Mathematics.