9. LINEAR PERTURBATION

In this section we study the effect on the spectrum of an operator $T_0\in BL(X) \ \ \text{when it is subjected to a perturbation} \ \ V_0\in BL(X) \ . \ \ \text{Thus,}$ if we denote the perturbed operator $T_0+V_0 \ \ \text{by} \ \ T \ , \ \ \text{we wish to obtain}$ information about $\sigma(T)$ when $\sigma(T_0)$ is known. In this process we shall attempt to allow as 'large' a perturbation V_0 as possible.

We start our investigation by considering the invertibility of an operator which is close to an invertible operator.

We first note that if A and B are both invertible operators in BL(X), then

(9.1)
$$B^{-1} - A^{-1} = B^{-1}(A-B)A^{-1} = A^{-1}(A-B)B^{-1}.$$

More generally, if $z \in \rho(A) \cap \rho(B)$, then

(9.2)
$$R(B,z) - R(A,z) = R(B,z)(A-B)R(A,z)$$
$$= R(A,z)(A-B)R(B,z) .$$

This follows on replacing A by A-zI and B by B-zI in (9.1). The relation (9.2) is known as the <u>second resolvent identity</u>.

THEOREM 9.1 Let A, B \in BL(X) and A be invertible. Let

(9.3)
$$r_{\sigma}((A-B)A^{-1}) < 1.$$

Then B is invertible, and

(9.4)
$$B^{-1} = A^{-1} \sum_{k=0}^{\infty} [(A-B)A^{-1}]^{k} = \sum_{k=0}^{\infty} [A^{-1}(A-B)]^{k}A^{-1}.$$

If , in fact,

(9.5)
$$||[(A-B)A^{-1}]^2|| < 1 ,$$