
27 

In any nu«<ericat approximation process, we deal solely with finite 

dimensional sub:spaces and with operators whose ranges are finite 

dimensional. In this section we study such subspaces and operators. 

We start with a result concerning the closedness of the sum of two 

closed subspaces of a COliTplex Banach space X In general, such a sum 

need not be a closed subspace, as can be seen by X = fl.2 . 

F1 = the closed linear span of {e2n : n = 1,2, ... } i.e., 
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j = 1,2, ... , but does noL However, if one of the summands 
n 

is finite dimensional, we have the following result. 

Let Y be a finite dimensional subspace and Z be a 

closed subspace of X Then Y + Z = {y + z : y € Y, z € Z} is a 

closed subspace of X In particular, Y itself is closed in X . 

Proof Assume first that Y is one dimensional, say Y = span{y1} 

If y 1 € Z , then Y + Z = Z 

y 1 f: Z let 

Consider a sequence (a y 1+z ) 
n n 

which is given to be closed. If 

in Y + Z , which converges to x in 

X . Now, for every z € Z , we have 
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