2. PROJECTION OPERATORS

A projection operator allows us to decompose a Banach space X as well as a commuting bounded operator T on X . In this way, we are able to concentrate only on a 'part' of X , or of T . These proJection operators will often occur in the spectral theory as well as in various approximation procedures that we shall study.

A complex Banach space X is said to be decomposed by a pair (Y,Z) <u>of its closed subspaces</u> if $X = Y + Z$ and $Y \cap Z = \{0\}$. In this case, we write

$X = Y \oplus Z$.

This happens if and only if every $x \in X$ can be written in a unique way as $y + z$ with $Y \in Y$ and $z \in Z$; if we let $Px = y$, then P is a linear map from X to X and satisfies $P^2 = P$, i.e., P is a projection. Also, the set $\{(x, Px) : x \in X\}$ is closed in X x X. This can be seen as follows. Let $x_n \to x$ and $Px_n \to y$. Since $P_{X_n} \in Y$ and Y is closed, we see that $y \in Y$. Also, $x_n - Px_n \in Z$ and Z is closed, so that $x - y \in Z$. Since $x = y + (x-y)$ with $y \in Y$ and $x - y \in Z$, we have $Px = y$. This shows that P is a *cLosed* operator; the cLosed. *graph theorem* tells us that P is, in fact, continuous $([L], 10.3)$. This operator P is called the projection from X on Y along Z.

On the other hand, starting with a projection operator $P \in BL(X)$ we obtain a decomposition of X as follows: Let $Y = R(P)$ and $Z = Z(P)$. Since P is continuous, Z is closed; also, since Y = $Z(I-P)$, where $I-P$ is continuous, we see that Y is closed. Moreover, for every $x \in X$, we have $x = Px + (x-Px)$, so that $X = Y + Z$. Clearly, $x \in Y \cap Z$ implies $x = Px = 0$. Thus,

$$
X = R(P) \oplus Z(P) .
$$