1.5. C_0^* -semigroups.

If the Banach space B is the dual of a Banach space B_* , the pre-dual of B, then it is of interest to study families of bounded operators $S = \{S_t\}_{t \ge 0}$ with the semigroup property $S_sS_t = S_{s+t}$ which are weak*-continuous in the sense that

1.
$$\lim_{t \to 0+} (S_t f, a) = (f, a)$$

for all $f \in B$ and $a \in B_*$,

2.
$$\lim_{\alpha} (S_{t}f_{\alpha}, a) = (S_{t}f, a)$$

for all t>0 , all $a\in \mathcal{B}_+$, and all families f_{α} such that

$$\lim_{\alpha} (f_{\alpha}, a) = (f, a) .$$

Such families are called C_0^* -semigroups. The simplest example is translations on $L^{\infty}(\mathbb{R})$ which has pre-dual $L^{1}(\mathbb{R})$.

Our first aim is to show that if S is a C_0^* -semigroup there exists an adjoint semigroup S_{*} on B_{*} such that

$$(S_tf, a) = (f, S_{*t}a)$$
.

The weak*-continuity of S then implies the weak, and hence strong, continuity of S_* , i.e., the C_0^* -semigroup S is the adjoint of a C_0^- -semigroup S_* . This explains the name C_0^* -semigroup. In the sequel we demonstrate that much of the foregoing theory of C_0^- -semigroups can be carried over to the C_0^* -semigroups by duality