SQUARE ROOTS OF OPERATORS AND APPLICATIONS

TO HYPERBOLIC P.D.E.'s

Alan McIntosh

INTRODUCTION

Throughout this paper H denotes a complex Hilbert space and V denotes a dense subspace, also with a Hilbert space structure, which is continuously embedded in H. The two norms are denoted $\|\cdot\|$ and $\|\cdot\|_{V}$.

For each t \in [0,t_1], J_t denotes a sesquilinear form with domain $V \times V$ which satisfies

 $0 \leq J_{+}[u,u]$, and

$$\kappa \|u\|_{V}^{2} \leq J_{+}[u,u] + \|u\|^{2} \leq M\|u\|_{V}^{2}$$

for all $u \in V$, where κ and M are positive numbers, independent of t and u .

The associated operators T_t are the operators with largest domains satisfying

$$J_{+}[u,v] = (T_{+}u,v)$$

for all $v \in V$. They are non-negative self-adjoint operators and have non-negative square roots $T_+^{\frac{1}{2}}$ with domains $\mathcal{D}(T_+^{\frac{1}{2}}) = V$. Indeed

$$J_{t}[u,v] = (T_{t}^{\frac{1}{2}}u,T_{t}^{\frac{1}{2}}v)$$

for all u and v in V. See [7] for details.