c^{1,1}-regularity of solutions to variational INEQUALITIES

Gerhard Huisken

INTRODUCTION

Let $\Omega \subset \mathbb{R}^n$, $n \ge 2$ be an open bounded set with smooth boundary and let u be a solution of a variational inequality of the form

(1)
$$u \in K_1$$
; $\langle Au + H(x, u, Du), v - u \rangle \geq 0$ $\forall v \in K_1$

where A is a quasilinear elliptic operator in divergence form

(2)
$$Au = -D_{i}(a^{i}(x,u,Du))^{1}$$

and the convex set K_1 is given by

(3)
$$K_{1} = \{ v \in H^{1,\infty}(\Omega) | v \ge \psi, v |_{\partial \Omega} = \phi \} .$$

We also consider the case of Neumann boundary conditions, i.e. solutions of

(4)
$$u \in K_2$$
; <v-u>> \ge 0 $\forall v \in K_2$

(5)
$$\mathbb{K}_{2} = \{ \mathbf{v} \in \mathbb{H}^{1, \infty}(\Omega) \mid \mathbf{v} \geq \psi \}$$

where

(6) <\eta>> =
$$\int_{\Omega} a^{i}(x, u, Du) \cdot D_{i} \eta dx + \int_{\partial \Omega} \beta \cdot \eta dH_{n-1}$$

for some function β on $\partial\Omega$.

1) Here and in the following we sum over repeated indices.