THE DIRICHLET PROBLEM FOR A LINEAR ELLIPTIC EQUATION IN A HALF SPACE WITH L^2 -BOUNDARY DATA

J. Chabrowski

Let $R_n^+ = \{x : x \in R_n , x_n > 0\}$. We denote point $x \in R_n^+$ by $x = (x', x_n)$, where $x' = (x_1, x_2, \dots, x_{n-1}) \in R_{n-1}$.

We consider the Dirichlet problem for the elliptic equation of the form

(1)
$$Lu = -\sum_{i,j=1}^{n} D_{i}(a_{i,j}(x) D_{j}u) + \sum_{i=1}^{n} b_{i}(x) D_{i}u + c(x) u = f(x)$$

in $R_{\ n}^{\ +}$. We make the following assumptions about the operator $\ L$:

(A) L is uniformly elliptic in $R_{\hat{n}}^{+}$, i.e., there exists a positive constant δ such that

$$\delta |\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j$$

for all $x \in R_n^+$ and $\xi \in R_n^-$, moreover $a_{ij} \in L^\infty(R_n^+)$ (i,j = 1, ..., n) . (B) (i) There exist positive constants K and 0 < α < 1 such that

$$\left| \left. a_{nn} \left(x^{\intercal}, \ x_{n} \right) \right. - \left. a_{nn} \left(x^{\intercal}, \ \overline{x}_{n} \right) \right. \right| \ \leq \ K \left| \left. x_{n} - \overline{x}_{n} \right| \right|^{\alpha}$$

for all $x' \in R_{n-1}$ and all x_n , $\overline{x}_n \in [0,\infty)$. (ii) $a_{in} \in C^1(R_n^+)$ and $|D_k| a_{in}(x)| \leq K_1 x_n^{-\beta}$ for all $x \in R_{n-1} \times (0,b]$, where K_1 , b and β are positive constants,