COLLOCATION METHODS FOR SECOND KIND FREDHOLM

INTEGRAL EQUATIONS

S. Joe

1. INTRODUCTION

In this paper we consider the application of the collocation method and its iterated variant to the numerical solution of the Fredholm integral equation

(1.1)
$$y(t) = f(t) + \lambda \int_0^1 k(t,s)y(s)ds$$
, $t \in [0,1]$,

where f and k are known, λ is a given scalar and y is the solution to be determined. The equation can be written in operator notation as

$$y = f + \lambda Ky$$
.

Taking C to be the Banach space of continuous functions on [0,1] equipped with the uniform norm, we shall make the following assumptions on (1.1):

Al: $f \in C$;

A2: K is a compact operator from C to C ;

A3: the homogeneous equation y = Ky has only the trivial solution.

It then follows from standard Fredholm theory that there exists a unique solution $y\in C$.

In the collocation method, y is approximated by a function belonging to some finite-dimensional subspace taken here to be a space of discontinuous piecewise polynomials. It is well-known that under suitable