PROBLEMS WITH DIFFERENT TIME SCALES

Heinz-Otto Kreiss

1. INTRODUCTION

Perhaps the simplest problem with different time scales is given by the initial value problem for the ordinary differential equation

(1.1)
$$\varepsilon dy/dt = ay + e^{1t}$$
, $t \ge 0$, $y(0) = y_0$.

۰.

Here ϵ , a are constants with $0<\epsilon<<1$, $\left|a\right|$ = 0(1) and Real $a\leq0$. The solution of (1.1) is given by

(1.2)
$$y(t) = y_{S}(t) + y_{R}(t)$$
,

where

$$y_{S}(t) = e^{it}(-a+i\epsilon)^{-1}$$
, $y_{R}(t) = e^{(a/\epsilon)t}(y_{0}-y_{S}(0))$.

Thus it consists of the slowly varying part $y_{g}(t)$ and the rapidly changing part $y_{p}(t)$. There are two fundamentally different situations

1) $\underline{a = -1}$. In this case $y_R(t)$ decays rapidly and outside a boundary layer the solution of (1.1) varies slowly. Many people have developed numerical methods to solve problems of this kind (see for example [15]) and we shall not consider this case.

2) <u>a = i is purely imaginary</u>. Now $y_R(t)$ does not decay and y(t) is highly oscillatory everywhere. In many applications one is not interested in the fast time scale. Therefore it is of interest to