THE FACTORIZATION METHOD FOR TWO POINT BOUNDARY VALUE PROBLEMS FOR ODE'S AND ITS RELATION TO THE FINITE DIFFERENCE METHOD

I. Babuška and V. Majer

1. INTRODUCTION

Finite difference and finite element methods for solving two point boundary value problems for systems of ordinary differential equations consist of

- (a) a discretization procedure which transforms the original problem into a family of finite dimensional systems of algebraic equations parametrized by the mesh size h , and
- (b) a solution procedure for the systems of algebraic equations.

For linear boundary value problems the algebraic equations are linear and step (b) reduces to the selection of a matrix reduction scheme. In this paper we consider only direct (elimination) methods of matrix reduction.

By these two steps, <u>taken together</u>, the original problem is transformed into a sequential <u>numerical process</u> (§5) which depends on the mesh parameter h. A complete analysis of the numerical procedure must consider this underlying numerical process, not merely the discretization step (a). In this paper we carry out such a complete analysis for a model singular perturbation problem of turning point type (§2) studied by H.O. Kreiss et al. in [1]. We show (§4) that the numerical process converges, as $h \neq 0$, to the solution of initial value problems for certain differential equations. These limiting equations are the <u>closure</u> [2] of the process. Thus it is