ITERATIVE METHODS FOR SOME LARGE SCALE GENERALIZED EQUATIONS

R.S. Womersley

INTRODUCTION

Let T be a set valued mapping (multifunction) of \mathbb{R}^n into \mathbb{R}^n (that is $T(x) \subseteq \mathbb{R}^n$ for all $x \in \mathbb{R}^n$). Consider the problem of finding a zero of the map T, that is a point $x^* \in \mathbb{R}^n$ which satisfies the generalized equation

(1.1)
$$0 \in T(x^*)$$
.

Such problems frequently arise as necessary conditions for optimization problems, so the continuity properties of the solution sets are of considerable interest (see [3] for example). However here the interest is in numerical methods for calculating \mathbf{x}^* . In particular attention is restricted to those maps T where the problem of finding \mathbf{x}^* is equivalent to the problem of minimizing some function F.

Consider the maps T which are the generalized gradient $\partial F(x)$ of a locally Lipschitz function $F:\mathbb{R}^n\to\mathbb{R}$. For any $x\in\mathbb{R}^n$ $\partial F(x)$ is a nonempty compact convex set in \mathbb{R}^n , and the mapping ∂F is upper semicontinuous (Clarke [1]). A locally Lipschitz function is differentiable almost everywhere, and $\partial F(x)$ is a singleton (the gradient of F) if and only if F is differentiable at x. Also if F is convex then the generalized gradient is the subdifferential of F. A necessary condition for a point x^* to be a local minimizer of F is that $0 \in \partial F(x^*)$, so solving (1.1) equivalent to finding a stationary point of F.