SOME RECENT RESULTS ON THE EQUATION OF PRESCRIBED GAUSS CURVATURE

John I.E. Urbas

In this article we discuss some recently established results $concerning\ convex\ solutions\ u\ \epsilon\ C^2(\Omega) \ of\ the\ equation\ of\ prescribed\ Gauss$ curvature

(1)
$$\det D^{2}u = K(x) (1 + |Du|^{2})^{(n+2)/2}.$$

Here Ω is a domain in \mathbb{R}^n , Du and D²u denote the gradient and the Hessian of the function u , and K(x) denotes the Gauss curvature of the graph of u at (x,u(x)), which we shall assume is positive in Ω .

We start with a necessary condition for the existence of a convex $C^2(\Omega) \quad \text{solution of (1).} \quad \text{If } \quad u \quad \text{is such a solution, then the gradient}$ mapping $Du: \Omega \Rightarrow \mathbb{R}^n \quad \text{is one to one with Jacobian} \quad \det \ D^2u \quad , \text{ so by}$ integrating (1) we obtain

$$\begin{split} \int_{\Omega} & K = \int_{\Omega} \frac{\det D^{2}u}{(1 + |Du|^{2})^{(n+2)/2}} \\ & = \int_{Du(\Omega)} \frac{dp}{(1 + |p|^{2})^{(n+2)/2}} \\ & \leq \int_{\mathbb{R}^{n}} \frac{dp}{(1 + |p|^{2})^{(n+2)/2}} \\ & = \omega_{n} , \end{split}$$

where $\omega_n^{}$ is the measure of the unit ball in ${\rm I\!R}^n^{}$. Thus the condition

$$\int_{\Omega} \kappa \leq \omega_{n}$$

is necessary for the existence of a convex solution $u \in C^2(\Omega)$ of (1).