w^{2,p} REGULARITY FOR VARIFOLDS WITH MEAN CURVATURE

John Duggan

Suppose $V=\underline{\underline{v}}(M,\widetilde{\theta})$ is a rectifiable n-varifold in \mathbb{R}^{n+k} with generalised mean curvature $\underline{H}\in L^p(\mu,\,\mathbb{R}^{n+k})$ in U , that is

$$\int div_{\underline{M}} X d\mu = - \int X \cdot \underline{\underline{\underline{H}}} d\mu$$

for all $X \in C_0^1$ (U, \mathbb{R}^{n+k}), where $\mu = \mathcal{H}^n L \overset{\sim}{\theta}$. Then, if $\widetilde{\theta} \geq 1 \, \mu$ -ae in U, p > n, $0 \in \operatorname{spt} \mu$ and $B_{\rho}(0) \subset U$, the regularity theorem ([A]) states that there are $\gamma = \gamma(n,k,p)$, $\delta = \delta(n,k,p) \in (0,1)$ such that

$$\frac{\mu(B_{\rho}(0))}{\omega_{n}\rho^{n}} \leq 1 + \delta , \qquad \left(\int_{U} \left|\underline{\underline{H}}\right|^{p} d\mu\right)^{1/p} \rho^{1-n/p} \leq \delta$$

imply that spt $\mu \cap B_{\gamma\rho}(0) = q(graph\ u) \cap B_{\gamma\rho}(0)$ for some linear isometry q of \mathbb{R}^{n+k} and some $u \in C^{1,\ 1-n/p}(B_{\gamma\rho}(0),\ \mathbb{R}^{k})$. (Here $B_{\gamma\rho}^{n}(0) = B_{\gamma\rho}(0) \cap \mathbb{R}^{n}$.) We show here that a higher regularity prevails, and that u is actually $W^{2,p}$ and that the density function $\tilde{\theta}$ is $W^{1,p}$.

We write (1) in non-parametric form:

(2)
$$\begin{cases} \int \theta \sqrt{g} g^{i\ell} D_{\ell} \eta = - \int \theta \sqrt{g} H^{i} \eta, & 1 \leq i \leq n \\ \int \theta \sqrt{g} g^{m\ell} D_{m} u^{j} D_{\ell} \eta = - \int \theta \sqrt{g} H^{n+j} \eta, & 1 \leq j \leq k, \end{cases}$$

for $\eta \in C_0^1(\Omega)$, Ω a domain in \mathbb{R}^n . Because the results we obtain hold quite generally, as well as in order to simplify the exposition, we consider, instead of (2), the following system:

(3)
$$\int_{\Omega} \theta \Phi_{\underline{i}}^{S}(Du) D_{\underline{i}} \eta = -\int_{\Omega} \theta H^{S} \eta , \qquad 1 \leq s \leq n+k .$$

Then we have