HARMONIC MORPHISMS ONTO RIEMANN SURFACES — SOME CLASSIFICATION RESULTS

Paul Baird

1. INTRODUCTION

Let $\phi : M \rightarrow N$ be a mapping between smooth Riemannian manifolds. Then ϕ is called a *harmonic morphism* if $f \circ \phi$ is harmonic on $\phi^{-1}(V)$ for every function f harmonic on an open set $V \subset N$. Such mappings were first studied in detail by Fuglede [8] and Ishihara [10]. They established an alternative characterization as follows.

For a point $x \in M$ at which $d\phi(x) \neq 0$, let V_X^M denote the subspace of T_X^M given by ker $d\phi(x)$, and let H_X^M denote the orthogonal complement of V_X^M in T_X^M . Say that ϕ is *horizontally conformal* if the restriction mapping $d\phi(x) \Big|_{H_X^M} : H_X^M \neq T_{\phi(x)}^N$ is conformal and surjective. Letting g,h denote the metrics of M,N respectively, this means that there exists a number $\lambda(x)$ such that $\lambda(x)^2 g(X,Y) = h(d\phi(X), d\phi(Y))$ for each $x \in M$ with $d\phi(x) \neq 0$ and for all $X, Y \in H_X^M$. Let $C_{\phi} = \{x \in M \mid d\phi(x) = 0\}$ denote the *critical set of* ϕ , and set $\lambda = 0$ on C_{ϕ} . Then we obtain a continuous function $\lambda : M \neq \mathbb{R}$ called the *dilation of* ϕ . In general λ is not smooth, although clearly $\lambda^2 : M \neq \mathbb{R}$ is a smooth function.

(1.1) A map $\phi : M \rightarrow N$ is a harmonic morphism if and only if it is both harmonic and horizontally comformal [8], [10].

It follows therefore that if ϕ is a harmonic morphism then dim M \geq dim N . If dim M = dim N , then in the case when dim M = 2 , the harmonic morphisms are precisely the weakly conformal mappings between