Smooth Foliations Generated by

Functions of Least Gradient

Ъу

William P. Ziemer

The work that is outlined below has been done jointly with Harold Parks, Oregon State University.

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set and suppose $u \in BV(\Omega)$. The function is said to be of least gradient with respect to Ω if for each $v \in BV(\Omega)$ such that u = v outside some compact subset of Ω ,

$$\int_{\Omega} |\nabla_{\mathbf{u}}| < \int_{\Omega} |\nabla_{\mathbf{v}}| .$$

A function of least gradient need not be continuous. Indeed, for any subset $A \subset \Omega$, the portion of the reduced boundary of A which lies in Ω is area minimizing if and only if the characteristic function of A is of least gradient.

In this work we consider the question of regularity of functions of least gradient subject to boundary constraints. Thus, we consider an open, bounded set $\Omega \subset \mathbb{R}^n$ that is uniformly convex. We also assume that Ω is smoothly (\mathbb{C}^{∞}) bounded. Let ϕ :bdry $\Omega \rightarrow \mathbb{R}^1$ be smooth and consider the variational problem

(1)
$$\inf \left\{ \int_{\Omega} |\nabla u| : u = \phi \text{ on bdry } \Omega \right\}$$

where the infimum is taken over all Lipschitzian u. It was shown in [PH1], [PH2] that the variational problem (1) admits a unique extremal. The Euler-