ISOLATED SINGULARITIES FOR EXTREMA OF GEOMETRIC VARIATIONAL PROBLEMS

Leon Simon

We here want to consider asymptotic behaviour on approach to an isolated singularity of an extremal u of a functional $\mathcal{F}(u)$ of the form

(*)
$$F(u) = \int_{B_1} F(x, u, Du) dx,$$

where F is a given function and $B_1(0)$ is the open unit ball in \mathbb{R}^n . u is allowed to be vector-valued with values $u(x) = (u^1(x), \dots, u^N(x)) \in \mathbb{R}^N$. What we have to say here has a natural generalization to the case when the domain of integration $B_1(0)$ in (*) is replaced by a conical domain C_1 of the form $\{\lambda w: 0 < \lambda < 1, w \in \Sigma\}$, where Σ is some smooth embedded submanifold of S^{n-1} , and also to the case when $u(x) = u(r\omega)$ $(r=|x|, \omega=x/|x|)$ is a section of some vector bundle over Σ for each fixed r. For these generalizations (which are important, for example, for applications to minimal submanifolds) we refer to the paper [SL1]. In any case the essential ideas are the same in this less general setting.

Our main aim is to discuss asymptotic behaviour of an extremal $u = u(r\omega)$ of (*) as $r \downarrow 0$, in case u has an isolated discontinuity at 0; notice that by an extremal of F(u) we mean a function u which satisfies the Euler-Lagrange system of (*) in $B_1(0) \sim \{0\}$; thus u satisfies

(1)
$$N_u = 0$$
 in $B_1(0) \sim \{0\}$,

where Nu is the second order quasilinear operator (with values in \mathbb{R}^N)

46