ERROR ESTIMATES FOR A FIRST KIND INTEGRAL EQUATION AND AN ASSOCIATED BOUNDARY VALUE PROBLEM

W. McLean

1. INTRODUCTION

This paper deals with an integral equation method for obtaining numerical solutions to the two-dimensional interior and exterior Dirichlet problem

(1.la)	$\Delta U = 0$	on	$\mathbb{R}^2 \setminus \Gamma$
(1.1b)	U = g	on	Г
(1.1c)	U(X) = O(1)	as	$ X \rightarrow \infty$.

Here

$$\Delta = \left(\frac{\partial}{\partial x_1}\right)^2 + \left(\frac{\partial}{\partial x_2}\right)^2 , \qquad x = (x_1, x_2) \in \mathbb{R}^2$$

is the Laplacian, Γ is a simple closed C^{∞} curve in the plane, and g is a given function on Γ . It will sometimes be necessary to refer to the bounded and unbounded components of $\mathbb{R}^2 \setminus \Gamma$, and these will be denoted by Ω_+ and Ω_- respectively. Also, $\nu(\Upsilon)$ denotes the unit normal at $\Upsilon \in \Gamma$ pointing into Ω_+ , and σ denotes the arc length measure on Γ .

The boundary value problem (1.1) can be reduced to an integral equation on Γ by seeking a representation of the solution in the form of a single layer potential

(1.2)
$$U(X) = \frac{1}{\pi} \int_{\Gamma} \log\left(\frac{1}{|X-Y|}\right) V(Y) \, d\sigma(Y) + \omega , \qquad X \in \mathbb{R}^2,$$

with v an unknown function on Γ and ω an unknown constant. If $v \in L_p(\Gamma)$ for some p > 1 then the formula (1.2) defines a function