BEST CONTINUITY AT THE BOUNDARY FOR SOLUTIONS OF THE MINIMAL SURFACE EQUATION

Graham H. Williams

We consider the Dirichlet problem for the minimal surface equation. We assume that Ω is a bounded open set in \Re^n and ϕ is a continuous function defined on $\partial \Omega$. Then we consider the problem:

Find $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ such that

(i) $u = \phi$ on $\partial \Omega$,

(ii) u satisfies the minimal surface equation in Ω , that is,

$$\sum_{i=1}^{n} D_i \left(\frac{D_i u}{\sqrt{1 + |D u|^2}} \right) = 0 \quad \text{in} \quad \Omega.$$

Additionally we assume that $\partial \Omega$ is C^2 and has nonnegative mean curvature, H, everywhere. This assumption means that there is a unique solution for the problem ([JS]). We examine the way the regularity of u depends on the regularity of ϕ .

If $k \ge 2$, $0 < \alpha < 1$ and ϕ , $\partial \Omega \in C^{k,\alpha}$ then the estimates of Jenkins and Serrin [JS] plus standard theory ([GT]) show that $u \in C^{k,\alpha}(\overline{\Omega})$. The case k = 1 has been considered by Lieberman [L] and also Giaquinta and Giusti [GG], and they showed that if $\phi \in C^{1,\alpha}(\partial \Omega)$ then $u \in C^{1,\alpha}(\overline{\Omega})$. The case k = 0 was studied by Giusti [G] and also by the author [W1], [W2], [W3]. The results of Giusti, from 1972, may be summarized as follows: