THE NEUMANN PROBLEM FOR EQUATIONS OF MONGE-AMPERE TYPE

P-L. Lions N.S. Trudinger J.I.E. Urbas

In the paper [10] we are concerned with the existence of classical solutions to the semilinear Neumann problem for equations of Monge-Ampere type

(1)
$$\det D^2 u = f(x,u,Du)$$

in convex domains Ω in Euclidean n-space, \mathbb{R}^n , where f is a prescribed positive function on $\overline{\Omega} \times \mathbb{R} \times \mathbb{R}^n$. In conjunction with (1), we treat Neumann boundary conditions of the form

$$D_{u} = \varphi(x, u)$$

on the boundary $\partial\Omega$, where ν denotes the unit inner normal on $\partial\Omega$ and Ψ is a given function on $\partial\Omega \times \mathbb{R}$. For the main existence theorem, whose statement follows, we assume that Ω is uniformly convex with boundary $\partial\Omega \in C^{3,1}$, $f \in C^{1,1}(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^n)$ is positive and non-decreasing in z, for all $(x,z,p) \in \bar{\Omega} \times \mathbb{R} \times \mathbb{R}^n$, and $\Psi \in C^{2,1}(\partial\Omega \times \mathbb{R})$ is non-decreasing in z with

(3)
$$\varphi_{z}(x,z) \geq \gamma_{0}$$