BOUNDARY REGULARITY FOR SOLUTIONS OF QUASI-LINEAR ELLIPTIC EQUATIONS

Chi-ping Lau

1. INTRODUCTION

We consider the boundary regularity of a classical solution $u(x) \in C^0(\overline{\Omega}) \cap C^2(\Omega) \quad \text{to the Dirichlet problem of a class of quasi-linear}$ elliptic equations:

where Ω is a bounded C^2 domain in \mathbb{R}^n , $n\geq 2$ and $\phi\in C^0(\partial\Omega)$ has some modulus of continuity β . Here we use the usual summation convention for repeated indices.

We refer to [GT], [JS] for the case when $\phi \in C^{2,\alpha}(\partial\Omega)$, [GG], [G], [Li 1] for $\phi \in C^{1,\alpha}(\partial\Omega)$, [Li 3] for ϕ having D ϕ Dini continuous and [Li 2], [S1] for $\phi \in C^{0,1}(\partial\Omega)$.

We shall mainly discuss how the order of non-uniformity (h) and the geometry (convexity) of Ω affect the regularity of a solution of (1.1) near the boundary. As was remarked in [B], when $0 \leq h < 1$, the operator Q behaves very similarly to the Laplace operator (where h=0); when $1 \leq h \leq 2$, some convexity (or some generalized convexity) condition has to be imposed on Ω . A typical representative of the latter class is the minimal surface operator (where h=2). Since this is discussed in