MINIMAL SURFACES WITH FREE BOUNDARIES

S. Hildebrandt

We will in this lecture give a survey of some recent results for minimal surfaces with free boundaries. To this end, we consider boundary configurations $\langle r, S \rangle$ in \mathbb{R}^3 consisting of a fixed part rand a free part S. The fixed part r is the union of Jordan arcs r_1, \ldots, r_m , and the free part consists of surfaces S_1, \ldots, S_n in \mathbb{R}^3 with or without boundary. Each of the curves r_j is either a closed curve, or else an arc with end points on S. In the following, the fixed part r may be void, whereas the free part S is always assumed to be non-empty.

A mapping $X : \overline{\Omega} \to \mathbb{R}^3$ of some Riemann surface Ω with boundary $\partial \Omega$ into \mathbb{R}^3 is called a solution of the free boundary problem for the configuration $\langle r, S \rangle$ if the following properties are satisfied:

- (i) $X \in C^{0}(\overline{\Omega}, \mathbb{R}^{3}) \cap C^{2}(\Omega, \mathbb{R}^{3})$;
- (ii) X is a harmonic mapping ;
- (iii) X maps Ω conformally onto X(Ω), except for isolated branch points in Ω ;
- (iv) $X(\partial \Omega) \subset \Gamma \cup S$;
- (v) the surface $M = X(\overline{\Omega})$ intersects S at $\Sigma \cap$ int S perpendicularly. Here Σ denotes the *free trace* $X(\partial\Omega)$ of the minimal surface M on the free boundary S.

Obviously, property (v) does not make sense since we assumed X to be only continuous at the boundary $\partial \Omega$. Therefore, (v) has to be understood in a weak sense. However, it follows from well known