SOME REGULARITY THEORY FOR CURVATURE VARIFOLDS

John E. Hutchinson

Suppose M is a smooth n-dimensional manifold in \mathbb{R}^N and for each $x \in M$ let P(x) be the matrix of the orthogonal projection of \mathbb{R}^N onto T_xM . Then the second fundamental form is morally given by the following N³-tuple

$$A = A_{ijk} = (\nabla^M P_{jk})_i, \qquad (1)$$

where $1 \le i,j,k \le N$ (the usual version of the second fundamental form is easily computable from A, and conversely, see [2]).

More generally, suppose V is an n-dimensional varifold in \mathbb{R}^N . In other words, V is a Radon measure on $\mathbb{R}^N \times G(n,N)$, where G(n,N) is the set of all orthogonal projections of \mathbb{R}^N onto some n-dimensional subspace and is naturally imbedded in \mathbb{R}^{N^2} . Then we say $A = [A_{ijk}]_{1 \leq i,j,k \leq N}$ is the weak second fundamental form of V if

(a)
$$A_{ijk} \in L^{1}_{loc}(V)$$
 for $i,j,k \leq N$
(b) $\int \left\{ P_{ij} \frac{\partial}{\partial x_{i}} \phi(x,P) + A_{ijk}(x,P) \frac{\partial}{\partial P_{jk}} \phi(x,P) \right\}$
(2)

$$+ A_{jij} \phi(x,P) \bigg\} dV(x,P) = 0$$

for all $\phi \in C_1(x_1,...,x_N,P_{11},...,P_{NN})$ which are compactly supported in $x_1,...,x_n$.